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Findings from the Interactive Model Cards Research

Crisan A, et al. (2022) Interactive Model Cards: A Human-Centered 
Approach to Model Documentation. FAccT’22



Substituting a single word changed the sentiment of the sentence & model’s confidence

Initial: trans-woman Alternative : woman Alternative : man
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Do these visualizations work for people who use AI but are 
not data scientists or machine learning researchers?



XAI has been defined by computer sciences, but [look- 
ing at it ] from the human-computer communication 
perspective allows me to see the machine not just as an 
object, but as a [mode of] communication. [P04]

“
“



Our Approach

Automatically Generate a 
Counterfactual Explanation (CFE)

Develop a CFE Interface with 
Different Explanation Modalities

Expert Interviews

Technique Interface
CFE Study Instrument

Formative User Study



A) Text (Baseline)

B) LIME

C) Text ++

D) LIME ++

Counterfactual ExamplesSingle Example

Discover problematic behavior more easily with explanations
Automatically Generate Counterfactuals

Interface



A) Text (Baseline)

B) LIME

C) Text ++

D) LIME ++

Counterfactual ExamplesSingle Example

Discover problematic behavior more easily with explanations
Automatically Generate Counterfactuals

Interface



A) Text (Baseline)

B) LIME

C) Text ++

D) LIME ++

Counterfactual ExamplesSingle Example

Discover problematic behavior more easily with explanations
Automatically Generate Counterfactuals

Interface



A) Text (Baseline)

B) LIME

C) Text ++

D) LIME ++

Counterfactual ExamplesSingle Example

Discover problematic behavior more easily with explanations
Automatically Generate Counterfactuals

Interface



Discover problematic behavior more easily with explanations
Automatically Generate Counterfactuals

Interface

Shows a full range of model 
responses, based on 
simulated counterfactuals



Study Participants
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Background and Culture Impact Explanations
Explainability Attributes
Influence of explanations on 
accuracy, trust, and fairness

“The challenge I have found is to translate that 
[explanation] into something useful because it 
is so noisy. It takes lots of human 
intervention to ‘sand down’ the noise” [P01]

“When I see this (sentiment) I think it’s wrong, 
because I think the sentence is neutral and if 
its wrong I think it shows some western 
Europe bias” [P06]

“My concern is [that you’re] just adding words 
as negative or positive, but a person seeing 
this can interpret it differently according to 
their background” [P04]

“ I am shocked by the certainty 
[...] I want [to see] more examples and [the 
model] being uncertain” [P10]



Applications go Beyond Data Science

Application
When and for what 

purpose CFEs are used

“If lay people could see this stuff it would be 
a huge gain in education to know that “hey 
text is parsed into words and they contribute 
[to the sentiment] differently” [P06]

“I would see this as exploring the variety of 
responses, so seeing what it looks like when it 
is more or less confident in the negative vs 
positive sentiment” [P07]

“this is something I would play with. I want to 
do this at scale. If I had to do 
this one by one I would tear my hair out” [P05]



Contextual Factors are Surfaced via Comparison

“ I can see this model its not too smart, so this 
is really helpful because I can literally see 
what it’s doing and why it’s so weird.” [P07]

“It would be really good for fairness, people 
from different cultures, they can interpret 
it for themselves” [P10]

“For someone like me who doesn’t speak 
English as a first language, this person has the 
opportunity to compare what are you 
saying” [P04]

Contextual Factors
Factors effecting how 

explanation is interpreted

“Trust comes from repeated examples, so I 
think the repetition is useful for trust [...] and 
that skepticism about fairness is being driven 
by example” [P10]



Automation + Visualization is Key for XAI

“Even as someone who builds models I want 
this sort of thing automated for me all the 
time” [P06]

“The first one [Text] will get you accuracy at best, 
the more complex ones have been much better able 
to look at transparency, and especially the last one 
[Scatter ++], especially” [P05]

“I also feel that my instinct is to see some “diff” if 
they are viewed together [...] when I scan I am 
looking for what’s different about these.“ [P01]

Process
Integration of CFEs into 

existing processes

“ I know there is more information there and I’m just 
not getting it. The more you visualize and expose to 
me the better” [P08]
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DG1:  Design Personalized 
Explanations with Guardrails

DG2:  Balance Information Density 
to Reduce Cognitive Load

DG3:  Consider Multi-modal 
Explanations (e.g., say the same thing 
many different ways).

DG4:  Incorporate Contrastive 
Examples During the Design Process. 



Takeaways

• XAI along is not well tailored to non-DS/ML end-users 

• Counterfactual Explanations (CFEs) can augment XAI techniques 

• Comparison is a powerful mechanism to cross backgrounds 

• Visualization is useful, but not a guarantee 

• Proxy tasks (e.g. sentiment analysis) can be useful to study more 
complex scenarios, but further research is required
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