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Eliciting Model Steering Interactions From
Users via Data and Visual Design Probes

Anamaria Crisan , Maddie Shang, and Eric Brochu

Abstract—Visual and interactive machine learning systems
(IML) are becoming ubiquitous as they empower individuals with
varied machine learning expertise to analyze data. However, it
remains complex to align interactions with visual marks to a user’s
intent for steering machine learning models. We explore using
data and visual design probes to elicit users’ desired interactions
to steer ML models via visual encodings within IML interfaces.
We conducted an elicitation study with 20 data analysts with
varying expertise in ML. We summarize our findings as pairs of
target-interaction, which we compare to prior systems to assess
the utility of the probes. We additionally surfaced insights about
factors influencing how and why participants chose to interact with
visual encodings, including refraining from interacting. Finally,
we reflect on the value of gathering such formative empirical
evidence via data and visual design probes ahead of developing IML
prototypes.

Index Terms—Design probes, interactive machine learning,
model steering, semantic interactions.

I. INTRODUCTION

V ISUAL and Interactive machine learning (IML) systems
are powerful interfaces for incorporating humans into the

machine learning loop [1], [2], [3], [4]. However, designing
visual encodings and interactions for steering machine learn-
ing models is a complex problem [5], [6]. One source of this
challenge is the tension between model and data-centric prior-
ities [7], [8], [9] that require different interaction modalities,
for example using control panels or direct manipulation of
marks [10]. Another is a broad user base with diverse expertise in
machine learning (ML) and data science (DS), but who regularly
employ these systems [11], [12]. Finally, there are challenges
toward aligning human intent with ML and data interactions [6],
[13].

We explore the use of data and visual design probes as
a way to gather formative empirical evidence to align visual
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IML systems interactions with users’ anticipated outcomes and
intents. Probes are an important component of pre-design for-
mative research capable of co-creating user experiences with
impacted stakeholders and surfacing problems ahead of devel-
opment effort [14]. They can be useful instruments for assessing
the semantic distance [15] between a user’s actions and the
meaning behind them - for example, whether changing the
position of a mark suffices a user’s intent of modifying its
class label. While probes exist in a variety of forms and are
widely used in human computer interaction (HCI) research [14],
[16], including prior IML applications, [13], [17] they are
under-explored in visualization research. Instead, visualization
research has tended to emphasize the development and eval-
uation of prototypes, which can result in cementing design
choices ahead of sufficient formative input from end users [14].
Prototypes can also suffer from the attribution problem and
can lack “observed results are loosely attributed to the system
as a whole, but without accurate explanations or insights as
to what component(s) played a bigger role to achieve those
results” [5]

Here, we developed a set of data and visual design probes
that we used to conduct an elicitation study with twenty partic-
ipants that routinely analyze data but vary in their ML and DS
expertise. The goals of our study are threefold. First, we seek
to elicit participants’ intents coupled with direct manipulations
of visual marks to update an ML model. We deliberately place
a lower emphasis on other features of a visual IML system and
focus solely on single visual encodings to mitigate attribution
issues [5]. Second, we explore to what extent and in what ways
the interactions differ in accordance with ML/DS expertise;
while we can make some basic assumptions the goal is to gather
data in lieu of making design decisions on instinct. Finally, we
reflect on how the empirical evidence we gather can be used to
prioritize the elements of visual IML systems.

Collectively, we present three core contributions:
� The design of data and visual design probes for examining

direct manipulations of visual encodings
� A set of target-interaction pairs that describe both what

data interactions act upon and how
� The results of an elicitation study that explores factors

influencing participants’ interactions
These contributions present opportunities for expanding the

visualization research toolbox of formative methodologies for
delineating an interaction design space that aligns with users’
needs and expectations.
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II. RELATED WORK

We summarize pertinent research from visualization, human
computer interaction, and machine learning research.

A. Frameworks for Human-AI/ML Interaction

Theoretical frameworks for paradigms for human-AI/ML in-
teraction inform and influence the development of techniques
for visual and interactive machine learning [18], [19], [20],
[21], [22], [23]. Within the visualization community, these
frameworks are rooted in earlier articulations of interactions
more generally. Ceneda et al. [24] presented a framework that
incorporated human guidance into the visualization processes
proposed by van Wikj’s [25] model of interactions. Building
on their processes is the work by Sperrle et al. [3], who
present a framework for a co-adaptive process for people to both
learn from a model and incrementally guide it toward a better
understanding of the human’s analytic intents over time. They
describe action-reaction pairs that complement the findings of
the target-interaction pairs from the elicitation study. Sacha et
al. [2] and Collins et al. [1] proposed frameworks to address
limitations of incorporating human guidance via visual analytics
processes. They delineate various points and methods for human
intervention, including semantic interactions, across stages of
model building. Beyond this work, others have recently explored
how an algebraic visualization design process (AVD) [26] can
help surface the side-effects of ML model updates on visual
representations [20], [27]. Dudely et al. [6] place visualization
tools in the context of broader user interface affordances and
describe how they can benefit end-users with varying degrees of
ML experts

The development of our visual design probes is influenced
by these prior frameworks for human-AI/ML interaction. We
were especially influenced by Sacha’s [2] framework of “what
you see is what you can change”, to enable direct manipulations
with data encoding marks.

B. Techniques for Interactive Model Steering

Direct manipulations for user interface elements have long
been a component in steering models of IML systems [6], [28],
[29]. A common approach is to allow users to change the model’s
parameters by directly changing the values of input widgets
(i.e., change a number in an input box or slider). Although
common, this approach has limitations) [10], [30]. Input widgets
are ‘model-centric knobs’ that can be overwhelm users and be
ineffective [6], [31], [32].

Semantic Interactions are an attractive alternative to input
widgets. Semantic interactions shield end-users from the com-
plexity of the model while using a visual metaphor that interprets
interactions with visual encodings to the underlying model pa-
rameters [33]. Moreover, these interactions are incorporated into
model learning and provide feedback to end-users through the
visual metaphor. Endert et al. demonstrated the utility of these
semantic interactions with the ForceSPIRE [33] system, with
further extension by Bradel et al. to develop StarSPIRE [34].

Semantic interaction techniques have also been applied to stan-
dard text modeling algorithms, as evidenced by iVisCluster [35]
and Utopian [36]. While this early work focused on spatial
metaphors, others have shown their limitations [37] and have
explored complementary and alternative approaches.

Other research has explored direct manipulations with data
via visual encodings but does not explicitly refer to themselves
as semantic interactions. Saket et al. [38], [39], [40] have ex-
plored possible interactions with different encoding types; we
leverage their ideas and approach in our design probes. Other
systems explore visual encodings more coarsely than [38], [39],
[40], but prioritize the development of techniques for model
steering. Brown et al. [41] demonstrates how interactions with
spatialized data can learn and refine and update a distance
function. Similarly, Podium learns a ranking function through
users’ interactions [42]. More recent work on collaborative
semantic inference [43] uses MLhooks to capture interactions
and update a deep learning model. Finally, there exist techniques
that more directly scrutinize the effects of data changes, and not
just parameter or function modifications, on the model changes.
Systems like iCluster [44] and VIAL [45] demonstrate that
visual clustering and labeling of data can outperform online
learning alone [46]. The Chameleon [47] prototype enables ML
practitioners to visualize the effects of their data changes on the
model’s features and performance.

Here, we list only a subset of the many techniques that exist for
incorporating human actions to steer ML models via visual and
interactive interactions. We refer the reader to more recent sys-
tematic reviews for in-depth and comprehensive overview [30],
[48], [49], [50]. To reflect on the utility of our approach, we
compare the interactions we elicit design probes to existing
and varied techniques for human-AI/ML interaction and model
steering.

C. Design Probes for Interactive Machine Learning

Design probes, generative toolkits, and prototypes are all com-
plementary approaches for designing and evaluating human-
centered technological system [14], [51]. A framework by
Sanders et al. [14] emphasizes the particular importance of
probes for conducting pre-design work that aims to find “inspi-
ration in users’ reactions to [the probe’s] suggestions”. They
contrast probes to prototypes that aim to test a specific idea
and tend to be used in evaluative research [52]. Prior research
has demonstrated that design probes can be especially useful
for creating a human-centered experience for machine learn-
ing [53], [54], which becomes increasingly essential in light of
the increasing diversity of those using (and impacted by) AI/ML
technology. While methods for developing and using design
probes vary, a recent framework by Subramonyam et al. [17] has
synthesized these common approaches into a Model Informed
Prototyping Workflow that “combines model exploration with
UI prototyping tasks”. Recently, they also propose the use
of data probes to co-create Ml/AI interactive experiences for
non-expert analysts [55]. The mechanisms for capturing user
interactions and an ML model’s response varies by according to
the approach. For example, design probes can be coupled with
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Wizard of Oz approach that simulates ML model behavior [56],
[57], [58]. Prototypes like Gamut [59] automatically capture
interactions and display model responses. While visualization
researchers use a variety of approaches, we note a preference for
high-fidelity prototypes assessed in summative evaluations [52].
We see opportunities to further explore approaches for co-
creating visual and interactive ML systems together with users
in pre-design research [60].

III. DATA AND VISUAL DESIGN PROBES

In this section, we describe the construction of a data probe
and a set of visual design probes that we use in a subsequent
elicitation study. Supplemental materials for our probes have
been made available online: https://osf.io/8wbgf.

The primary objective of our data and design probes is to
elicit interactions with a machine learning model with the intent
of steering the model’s training: We do not limit ourselves to
uncovering only novel interactions, but also to collect the broad
scope of users’ desired interactions. In addition to collecting
these interactions, we wanted to also explore the factors moti-
vating those interactions including reasons why interaction is
not desirable. Collecting both desired interactions and users’
expressed intents allows examine and contrast what is both
desirable and feasible.

The possible design space for these data and visual probes is
vast. We prioritize understanding how users directly manipulate
data-encoding marks of visual encodings to steer an ML model.
The result is that our visual design probes emphasize different
chart types, similar in spirit to the approach taken by Saket et.
al. [38], and not all aspects of the interface. Instead, we use
our probes to elicit the other aspects of the user interface (i.e.,
performance diagnostic plots, explainability features, etc.) they
believe would be useful. Finally, we aimed to minimize potential
attribution issues that impact visual IML systems [5]. We created
our data and visual design probes with these objectives in mind.

A. Data Probe

Data probes are a useful tool for encouraging divergent
thinking about the behaviors on IML systems, considering their
boundaries and limitations, and imagining (or proposing) alter-
native behaviors [55]. For our purposes, data probes are useful
for reflecting on the efficacy of the different visual encoding
choices and the interactions they afford. We created a design
probe for a synthetic movies dataset. We use synthetic data,
over an actual dataset, because it allows us to control the shape
and distribution of the data, including the introduction of noise
and errors, to probe end-users perceptions and their desired
interactions.

Overview: Our data probe explores the output of a topic
classification model. We created a dataset of 50 movies that we
compiled from IMBD and Rotten Tomatoes, harvesting their
title, a brief synopsis, and primary genre (i.e., its classification
label). We select five movies belonging primarily to one of ten
genres: Action, Animation, Comedy, Drama, Fantasy, Holiday,
Horror, Romance, Sci-Fi, and Thriller. To construct our synthetic
dataset, we first deliberately introduce errors into the labels.

For example, Dr. Strangelove is a comedy movie, but we set its
predicted genre as a romance; Die Hard is a ‘Holiday’ movie but
is predicted to be ‘Action’).1 Next, we use a Gaussian Mixture
Model (GMM)s to simulate the classification probabilities as
well as a set of two-dimensional XY coordinates for each data
point; the 2D coordinates are a substitute for computing a
dimensional reduced representation of the dataset. We explored
different parameter settings for the GMM and its components,
to modify the number spread of each cluster, their proximity
and orientation to each other, and the extent that they overlap
(see supplemental materials). We selected one set of simulated
results for the final data probe.

Design Considerations: While movies can belong to multiple
genres, we deliberately imposed a single classification label per
movie to observe if participants would be motivated to modify
this. If participants were to introduce multiple labels per movie,
then they would be introducing a change to the model that would
go beyond simple parameter updating. We similarly use errors
and ambiguities as prompts for discussion around the data and
the model. In both instances, we are interested in assessing if
participants would discover these prompts via the visual design
probes and how they would respond to them.

The overall size of the data probe is smaller than a typical ML
workflow, which features thousands, millions, or even billions
of points depending on the dataset. The smaller size of 50 points
was pragmatically selected to make the design and interaction
of the visual design probes feasible, whilst still having diversity
and variation in the dataset. Visualization research has not
proposed a singular dataset for clustering data, nor has prior
research concerning clustering with visualization discussed the
relationship between dataset size, total marks displayed, and
interactions. Lacking such guidance, we opted for a dataset size
amenable to our research objectives. However, we argue that
while datasets are massive, end-users rarely interact with all
data points at once. They may filter or aggregate information,
leaving them with a more reasonable number of points to interact
with. While the design of our data probe may not be suitable for
answering all possible questions about model steering through
visual encodings, it does allow us to explore the fundamental
questions of how end-users interact with data encoding marks
where each mark represents one data point.

Generality and Transferability: We derived the probe data
from two commonly used machine learning datasets with mod-
ifications to deliberately introduce errors and ambiguity. More-
over, the movies that we selected for our probe are popular
such that the majority, if not all, participants were familiar
with them and their premise. The choice of dataset also served
to ameliorate two potential confounding factors in this study:
dataset characteristics and participant’s dataset familiarity. Our
dataset is not intended to serve as such a benchmark, oth-
ers may find our approach transferable to other datasets and
applications.

1The movie ‘Die Hard’ takes place on Christmas Eve and has prompted a
(sometimes facetious, sometimes serious) debate of whether it is a holiday film
or not. Among our participants, 60% said it was solely an action movie, 35%
thought it was both an action and holiday movie, and 5% were unsure.
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TABLE I
MAPPING OF ELEMENTS OF THE DATA PROBE TO VISUAL ENCODING

Fig. 1. Visual design probes created for our elicitation study.

B. Visual Design Probe

We used the data probe to create a set of visual design probes.
Visual and interactive ML interfaces can be complex and multi-
faceted and include modalities for the user both to interact with
data, through both existing and bespoke visual encodings [49],
and get feedback on the effects of their interactions [6]. The
complexity of these interfaces can also lead to attribution chal-
lenges [5]; it is not clear what the value of individual interface
components is. We construct visual design probes that examine
the relationship between the visual encoding design choices and
participants’ interactions with individual data marks. Our visual
design probes would constitute one component of an overall IML
system and we use these probes to also elicit from users what
the other interface components should be.

Overview: We create visual design probes for a simple text
classification problem. We mapped the elements of the data
probe to marks and channels to a set of four visual encodings:
a table, a bar chart, a scatter chart, and a dot chart. While
the table is potentially an unusual type of visual encoding, it
remains a common way to view and report on machine learning
results and serves as an important baseline. Encoding choices
are summarized in Table I and the four visual design probes are
shown in Fig. 1.

Table: Each row displays one movie along with its labeled
and prediction genres and the classification probability.

Bar Chart: Each rectangular mark in the bar chart represents
a single movie. The marks are vertically stacked and positioned
along the x-axis according to the predicted genre. The x-axis
is also sorted by the number of movies predicted to belong
to the genre. The color of the individual marks represents the
labeled genre. The model’s prediction probability is shown via
the mark’s outline; a solid outline indicates higher confidence,
whereas the dashes indicate lower confidence.

Scatter Chart: Each point in the scatter chart is a single movie.
The marks are positioned according to x and y coordinates that
are simulated from the GMM. The marks are colored according
to their predicted genre and sized according to the model’s pre-
dicted probability; smaller mark sizes indicate lower prediction
probabilities. A red stroke outline around the marks indicates
whether the predicted genre matches the labeled genre (black
outline) or not (red outline). The scatter chart is also intended to
represent lower dimensionality data representations or embed-
dings that are routinely presented alongside ML models.

Dot Chart: Each point in the dot chart is a single movie.
The points are positioned along the x-axis according to their
predicted genre and along the y-axis according to the predicted
probability. As with the bar chart, the genres are sorted according
to class size from largest to smallest. The colors of the point
marks encode the labeled genre.

Alternative Chart Types: We recognize that different individ-
uals may expect different visual encoding types, or may not
find the default encoding choices effective. In considering how
we implement our probes we deliberately sought to provide
participants with the tooling to challenge our design choices
and even propose new visual encodings.

Design Considerations: We choose these three visual encod-
ings (and table) because, based on our experience, they are
common ways to visual ML model data and results. Others have
also previously explored these visualizations in prior work of
direct manipulations of data encoding marks [38]. The goal
of consistently encoding data across probes is to reduce the
potential for anyone visualization to have an outsized effect on
the interactions. Others who leverage data and visual probes
in their work may find greater variability in the probe design
desirable. However, in a pilot study (Section IV-F) we found
that too much variability was disorienting. We modified our
probes ahead of the full study (Section V) to the versions shown
in Fig. 1.

We use the same visual design probes for both ML and non-
ML Experts. While these two groups have different expertise,
which influences their needs, we believe that visualizations are
a common and reasonable baseline for both groups. We rely on
both the expressivity of our probe medium and our elicitation
study structure to capture additional elements participants would
need, as well as, the similarity and differences between these
groups.

C. Visual Design Probe Implementation

We developed visual design probes that are situated between
a paper prototype and a web-based app. Through our prototype,
an end-user can interact by directly manipulating marks in the
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chart (i.e., change its position, color, size, etc.). The responses
to these interactions are driven by a human ’wizard’ (i.e., the
study administrators) and assessed by the end-users.

Overview: We considered different materials for implement-
ing our visual design probes and found Google Slides to be
a surprisingly compelling medium to meet our goals. As a
medium, Slides allowed us to implement the different visual
encodings, provided a way for participants to easily change them
(i.e. change position, color, size, shape, etc.), and introduce new
encoding elements. It also allowed us to securely share and save
individual sessions with different users. The slides environment
was also familiar, reducing concerns about the effects of systems
novelty [5]. Finally, Slides was also collaborative allowing for
an administrator to create interactive responses to end-user
interactions.

Affordances of Visual Design Probes: The four visual encod-
ings in Fig. 1 were implemented in Google Slides with individ-
ual marks and channels capable of being directly manipulated
(i.e., moving a point, changing its size, or color). We chose
this medium because it provided considerable encoding and
interaction affordances. At a minimum, we were able to support
the full spectrum of interactive operations reported in Saket et
al. [38] (i.e., modifying position, size, color, height, and width
encodings) in addition to others such as adding text annotations,
new shapes, or comments. We also created tooltips for each mark
by making use of hyperlink previews.

The goal of our visual design probes was to hone in on direct
manipulations with data encoding marks, not a whole system.
We believe this focused approach can collect useful empirical
data by providing a canvas for expressing desired interactions
with visual encodings. Moreover, the affordances of our probe
can provide sufficiently generative power to meaningfully ex-
tract the relationships between data, interactions, and desired
model updates.

Simulating Model Modifications: We used a Wizard-of-
Oz [57] approach to simulate model updates and system be-
haviors. Our Wizard made two assumptions about participant
interactions with visual design probes. First, any interactions
with data encoding marks were valid. For example, if a user
wanted to change the size, position, and/or color of a mark
to express the same intent, such as changing a class label of
one or more data points, these were all valid actions. Second,
participants could introduce new data marks and the wizard
could learn from them. For example, adding an ellipse around
a group of points to denote a class. Given these interaction
assumptions, the possible responses by the Wizard were broad,
but allowed us the flexibility to collect a variety of participant
perspectives as part of a pre-design empirical phase. Notably, we
made no assumptions towards the back-end ML model for the
Wizard’s responses. We assumed that some of the participants’
interactions could conform to existing models, including the
GMM we used to generate the data, but we also wanted to capture
possible instances were they did not.

A study administrator would craft a model’s possible re-
sponses in response to participant interactions and the visual en-
coding choice. For example, if an end-user changed the position
of the mark, a study administrator could respond by changing its

color or moving additional points that were proximal to the one
that moved. The administrator prompted participants for their
expected rate of update, for example, with each interaction or
following a sequence of interactions. Lastly, before the model
was updated participants were asked to indicate their expected
response. The wizard used these utterances to craft a response
by changing marks in the visual encoding. We did not have a
prescribed procedure for how the Wizard should interpret the
utterances; it was left to them to interpret based on session and
the context. Participants were not informed that their utterances
were used to carry out the response. After the update was carried
out, participants were prompted again to see if the changes
aligned with their expectation. Given the medium, participants
were aware that a human was driving the updates, but they did not
know how the updates were being made. This approach allowed
for co-creation processes of ideating around different individual
expectations of model responses.

IV. ELICITATION STUDY

We conducted an elicitation study using the visual design
probes. Elicitation interviews are a qualitative technique that
uses an iterative approach to reveal increasingly granular details
of a participant’s experience within a situated scenario, in this
case steering a classification model [61]. Our goal of the elicita-
tion study is to explore “approaches, processes, and subjective
experiences” [61] of interacting with ML models. We argue that
this approach allows us to explore the semantic distance [15]
between a variety of encoding and interaction affordances and
the user’s intended model modifications. To that end, we seek to
not only elicit novel interactions, but to examine how interactions
are linked to possible modifications of ML models and what the
intended effects of these interactions are.

A. Research Questions

We are motivated by the challenges that domain experts
experience when needed to update machine learning models,
often without the use of code [11], [20], [62]. We also wanted to
understand if and how the needs of these domain experts differ
from individuals that have formal ML training. Our study sought
to examine the following research questions :
� RQ1 : How do participants choose to interact with marks

of visual encodings to steer a model?
� RQ2 : What are participants’ perspectives or concerns

towards these interactions?
� RQ3 : What differences exist (if any) between ML and

non-ML experts?
We use a the same visual design probes to assess these research

questions with both ML and non-ML experts. While the needs
of both groups are different at face value, we were interested in
understanding to what extent and in what ways expectations of
these two groups overlap or differ relative to a common baseline.
We posit that using a common baseline as part of pre-design
empirical work [14], [60] helps to calibrate and evaluate IML
interfaces.
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B. Participant Recruitment and Background

ML and Non-ML Expert Definition: We use the definition of
a non-ML expert articulated by Qian et. al. [11], which is that
they are “people who are not formally trained in ML and are
actively building ML solutions to serve their needs in the real
world”. This definition excludes lay people that, in addition to
lacking forward knowledge, do not actively build or develop ML
workflows even though they may encounter ML models in their
daily work [12]. We define an ML expert to be someone with
formal training (i.e., undergraduate or graduate-level education)
in ML or DS.

Recruitment: We recruited an even number of participants
with and without ML expertise to participate in our study.
We posted calls to participate on Twitter and various machine
learning and data science Slack Channels, in addition to using
snowball sampling [63] to recruit and screen eligible participants
and determine if they were classified as ML or non-ML experts.
We also sought to have some gender balance in our recruiting,
specifically reaching out to individuals that identified as female
to participate. We recruited a total of 20 participants; half of
the participants identified as female or non-binary. The initial
four recruits were used in a pilot study (Section IV-F) that
served to both refine the data and design probes and also to
establish an appropriate sample size. Following the initial full
study data analysis, we reflected on the findings and established
that we had reached analytic saturation. Based on this analysis
we determined another round of recruitment was not required.

Background: A total of 8 of 20 (40%) identified as data
scientists, 6 (30%) as data or machine learning engineers, 6
(30%) as software engineers, 3 analysts (15%), and finally 3
(15%) as visualization researchers. A total of 6% of individuals
did not identify with any of these roles. Note that participants
could select more than one category to report their role. Aligning
with our definition of ML and non-ML experts, all participants
had regular exposure to ML models but reported a varied focus
on model work in their daily activities. In total 8 (40%) reported
that training machine learning models were a daily component
of their job; note that building an ML solution does not require
training a model, as it is possible to use pre-trained models.
An additional 10 (50%) report primarily interpreting machine
learning results in their daily work.

C. Session Procedures

On boarding: All sessions took place over a video conferenc-
ing platform. We participants were provided with an overview
of the study after which we obtained consent to participate to
record audio and video of the session. Participants were then
provided with a unique study link to access a set of training
materials and the study probes. For the training materials, partic-
ipants were given an overview of the data probe (Section III-A).
They were also provided with a simple bar chart encoding and
asked to complete a set of basic interaction tasks (i.e., move a
point, change its color or position, hover to reveal a tooltip) to
familiarize themselves with the affordances of Google Slides.
As most participants had experience using Slides, or some other
presentation tool, all found this task to be straightforward.

Interacting with Visual Design Probes: Participants were then
presented with the design probes (Fig. 1) in one of four possible
orders (Section IV-F). For each visual encoding, participants
were given a brief overview of the data that is encoded and
were provided with a set of possible interactions (i.e., move a
point, change its color). Importantly, participants were informed
that it was valid to indicate that they did wish to make any
modifications. Participants were prompted to speak out loud to
describe what they were doing and why. In response to both
participant interactions and responses, the study administrator
would simulate a response (see Section III-C). These were
sometimes simple responses (filtering, sorting/re-ordering, or
highlighting) or were model responses (updating the positions
of other points, reclassifying data according to new labels,
updating classification probabilities). Lastly, participants were
encouraged to consider what additional feedback would help
them understand and contextualize their actions; if they chose
not to interact, they were asked to discuss why.

Facilitating Model Updates: Model updates proceeded at
a cadence in accordance with participants’ stated preferences
(see Section III-C); in practice, nearly all participants wanted
updates after completing a sequence of interactions, not with
each individual interaction. For the update step, the wizard
would manipulate individual data encoding marks, or groups
of marks, depending upon the participants’ interactions and
their expressed model steering intents. Given the size of the
data probe and the simplicity of the visual design probes the
‘model update’ could be carried out in under a minute in
most instances. Participants could see individual marks being
moved in real-time. At the end of the update, indicated by a
prolonged pause, participants were asked to comment on the
‘responses’ and whether the cadence of change and magni-
tude of change aligned with their expectations. Once again,
the specific responses were tailored to each individual and
the particulars of that session. The process of model refine-
ment would continue until participants indicated they wished to
conclude.

Wrapping Up: Participants were asked to reflect on their
experience overall and provide any final thoughts.

D. Data Collection and Analysis

We collected and analyzed approximately 20 hours of record-
ings. We retained modifications participants made to the design
probes and took notes throughout the sessions. Video recordings
captured participants’ interactions with the design probes and
audio was transcribed for analysis. We manually annotated the
video recordings for participants’ direct manipulation of visual
encoding marks. We record single instances of an interaction per
visualization, not per mark; for example, if a participant changes
the color of 10 different point marks in the scatter chart, this is
tallied as just one instance of semantic interaction and not 10. We
use descriptive statistics to summarize the types and frequencies
of interactions across sessions. We use participant utterances to
add context to both the purpose of the interactions, and any
hesitations.
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E. Session Overview

Sessions lasted on average 50 minutes; the shortest session
was 40 minutes and the longest was 1 h and 7 minutes. Partici-
pants spent on average 5 minutes and 32 seconds with each en-
coding; administrators checked in with participants either at the
five-minute mark or when they observed a prolong paused (one
minute or greater). In total participants spent 22 minutes and 40
seconds (roughly 50%) of the overall session time across all four
encodings. The rest of the session duration consisted of consent,
overview, practice, and wrapping up and addressing technical
issues (video, connectivity, screen sharing) if any arose. On
average participants spent 5m33 s with the table, 5m31 s with
the bar chart, 5m56 s with the scatter chart, and 5m17 s with the
dot chart. The interactions with the scatter chart were slightly
slower because it took more time for participants to identify a
mark they were interested in with the hover action. The longest
a participant spent with any one encoding was approximately 9
minutes. We did not precisely time the responses of the Wizard,
but did not note any response that took especially long to craft for
any encoding. This is largely because the Wizard was reasonably
familiar with correspondence between marks and certain movies
and given the dataset size was able to quickly respond.

Participants did not continuously interact with an encoding
during a session, instead they would perform as a set of in-
teractions after which they would be prompted by the study
administrators to explain the meaning behind them. Participants
varied in how much or little they chose to discuss their inter-
actions; again while we lack precise timing, anecdotally some
participants were more verbose than others, which may have
contributed to longer time spent with an encoding.

F. Pilot Study

We conducted a preliminary pilot study with four participants
to refine the visual design probes (i.e., spelling errors, complex
flow, and design inconsistencies). The pilot study also revealed
the ordering effect of our visual probes, which introduced an
anchoring effect [64]. To mitigate this effect, we grouped the
table (T), bar chart (B), scatter chart (S), and dot chart (D)
into two sets and varied the order in which they would be
presented to the participants as follows: [(TS)(DB)], [(TD)(BS)],
[(ST)(DB)], [(DB)(ST)]. Given these presentation orders, our
study would need to recruit at least eight participants (4 ML and
4 non-ML). We wanted at least each order to be viewed twice
within each group, which resulted in a minimum study size of
16 participants.

V. ELICITATION STUDY FINDINGS

We summarize the results of our elicitation study according
to our research questions (Section IV-A).

A. RQ1: A Spectrum of Interaction

We summarize participants’ interactions with visual encoding
marks as target-interaction pairs. Targets are the data attributes
that participants sought to modify and interactions are the mech-
anism they used to do so. Participants demonstrated a variety

of strategies and consistency when manipulating marks of our
visual design probes. The full set is enumerated in Fig. 2 and
a subset of the most common target and interaction pairs are
shown in Fig. 3. Across all of our study sessions, we recorded
a total of 114 examples of interactions that we summarize as
a set of 43 unique target-interaction pairs. These interactions
were not gathered uniformly across participants; two (one ML
and one non-ML) provided no interactions at all (per the session
procedures (Section IV-C) it was valid to indicate no desire to
interact). Conversely, one participant demonstrated 16 (of 43)
unique interactions; the median was 8. Participants targeted their
interactions both at individual data encoding marks, and sets
of marks. Critically, we found the interactions were deliberate
and that participants could articulate their interaction intents and
expectations.

1) Data Targets: We identified a total of 9 data targets; this
number exceeds the total number of raw attributes in the dataset
because participants also introduced new attributes through the
encodings. As an example, one participant added a column to
the table probe to introduce a weight to each movie in the
dataset. The participant wanted the weight column to inform
the model of data points to prioritize in retraining: “I want to
tell the model to worry about these points and don’t worry as
much about getting these [others ones] right [...] which would
allow me to say, I really care about these and I don’t so much
care about those” [ML:07]. One participant indicated wanted
to augment the data through the interactions, a reflection of the
expressivity of our design probes: “when I think about what I
am feeding the machine learning model there, it’s essentially
creating another dimension for it to run through[..] I am saying
‘Here’s a user dimension that I want you to consider [..] with
the other dimensions that you have’[ML:04]. Lastly, nearly all
participants also introduced multiclass labels for each movie,
which for analysis we treated as separate from the original single
class label (the primary genre).

Considering both initial datasets and additional participant-
derived attributes collectively, we found that the most common
targets of interactions are primary and predicted labels (genres)
and model probabilities (Fig. 2). However, we also observed
instances when participants also wanted to indicate when they
agreed with the predicted label instead of the initial label: “I
also have this urge to say that I like how this is being clas-
sified [over the primary]” [non-ML:06]. These findings show
that participants are not just seeking to update the ML model
parameters. They are operating on a meta-modeling level by
saying that the way the data is modeled might not be true to
the meaning of the data itself; they are challenging the “ground
truth” of the given data. Moreover, although our data probe is
constructed for a simple classification model, our findings show
that the scope of modifications participants wish to make would
push the boundaries of such a model by challenging the data
assumptions it was trained on.

2) Mechanisms of Interaction: Participants demonstrated a
variety of strategies for interacting with data targets (Fig. 2).
The most common types of interactions were changing the
position, size (or height), and color of the mark. These types of
interactions were common to the bar, scatter, and dot plots. With
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Fig. 2. Frequency of Interactions (x-axis) and their Data Targets (facets) elicited from a study using the visual design probes.

Fig. 3. Subset of common target-interaction pairs elicited from participants in our elicitation study. The difference between the initial (V0) and resultant
visualization (V1) can be used to refine an ML model without directly exposing the person to its parameters.

the table data, participants would frequently overwrite existing
text, for example, to modify a movie’s genre or its prediction
probability. Interestingly, participants also introduced graphical
elements to the table. The most common was coloring the rows
to reflect the classification probability. Some participants added
marks to new columns (see Fig. 4) that they wanted to use to
modify the data weight of the row.

Participants explored encoding designs beyond these defaults,
a set of examples from four participants is shown in Fig. 4.
One participant [non-ML:03] used the design prob to proto-
type a “accordion view” with the bar chart; surprisingly, and
independently, another participant [non-ML:05] had a similar
request but described it instead of implementing it. Participant
[non-ML:03] proposed that clicking on a column within the
stacked bar chart would trigger the individual marks to reposition
themselves next to each other. The participant demonstrated
how they would then inspect the individual marks and modify

Fig. 4. Examples of larger changes participants made, which include changing
the visual encoding, adding new elements, and adding new components to the
visual interface like comments.
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their heights (prediction probability) and even introduce new
genres by recoloring segments of the mark. This was the most
complex strategy we observed and indicated to us that the
visual design probes provided affordances for participants to
creatively express themselves. Such expressivity is useful for
challenging existing visual design ideas, as was the case for our
probes, and iterating on encoding and interaction design. Other
new marks participants proposed included adding links between
marks (ML-04) to indicate similarity, and adding columns to the
tables to add more data, such as data weights (see Section V-A1).
Participants introduced new marks by repeating an existing one.
For example, when wanting to express that a movie belongs to
multiple classes, several participants choose the strategy of copy-
ing a mark and pasting it into multiple genres. Lastly, participants
also explored introducing new, or alternative, channel encodings
such as color gradients and transparency to encode multiple
classes and prediction probability, respectively. Overall, both
ML and non-ML experts used similar types of interactions and
targeted similar data attributes for model steering.

Reasons not to Interact: Only two (of 20) participants declined
to interact with any of the visual design probes. One of these
participants was a non-ML expert and expressed concerns about
injecting bias (other participants also expressed these concerns
and we elaborate further in Section V-B1). The other participant
was an ML expert and felt that visualizations were primarily
for communication and not for model steering - they preferred
to code a solution, but this is not an option for many non-ML
experts. Other ML expert participants saw the value of interact-
ing through visualizations to explore model steering for certain
tasks. These ML participants also indicated instances when they
did not want to refine the model but completely retrain it or
select a new model. Three participants indicated that they would
want to retrain the model on only the misclassified results. Two
said that they would use the visualizations to decide whether to
choose a different model. In these instances, ML experts felt it
was better to drop into code instead of interacting through an
interface.

Additional Properties of Interactions: We observed that in-
dividual interactions could also be both compounded and hi-
erarchical. Compounded actions affect multiple data targets
simultaneously, for example, moving a mark from one position
to another, with the intent to change its class, should be ac-
companied by an automatic change to its probability (higher for
the new class, lower for the new class), and vice versa. Actions
were hierarchical when the participants wanted to make changes
that should cascade down to individual points. Two participants
described hierarchy actions via anchor points; these were points
participants chose to represent a cluster and any modifications
to those anchor points should be applied to others near it.

3) Feasibility and Utility of Interactions: We identified two
factors impacting the feasibility of implementing the interac-
tions participants demonstrated via our probes: whether it was
reasonable to implement the interaction and whether it was
possible to use the data generated by the interaction to update
an ML model. First, some interactions, although possible to
implement, might not be reasonable to scale. An example is
using gradients to indicate multiple classes (i.e, a movie belongs
to two categories). The design space we collect offers multiple

alternative strategies for encoding multiple classes, elicited by
participants, that may be more favorable according to multiple
participants and reasonable to implement, such as repeating a
mark (see Fig. 2). Another factor of feasibility is whether the
data generated by the interaction could actually be used in
an ML training regimen. For example, participants expressed
introducing new class labels, having multi-class assignments, as
well as introducing hierarchy to data points. Not all classification
models would be able to accommodate such interactions and
prototype systems that failed to anticipate them would not be
able to support them at all. In this case, the probes can suggest
further directions for expanding ML models to incorporate user
feedback. Importantly, it may also be used to help refine an ML
model backed in a visual IML system. For example, if partici-
pants consistently introduce multiple classes or data hierarchy,
as participants did in our study, then we could choose a model
that supports the incorporation of such data. It may be possible,
but challenging, to revise a more complex prototype to align
with user expectations.

We can also consider the utility of interactions surfaced. We
observed that the interactions surfaced by our visual design
probes have also been identified in prior studies, which lends
validity to the types of interactions our probes are able to elicit.
For example, others have reported [44], we also observed behav-
iors of grouping points and annotating clusters, in one instance
to create completely new clusters with labels that did not exist in
the initial (training) dataset. When we compare our results to the
comprehensive summary of cluster interactions in Bae et al. [50],
we also find overlapping examples of participants adding or
merging, modifications to the cluster’s structure (i.e., moving
marks in and out of clusters), adding constraints by anchoring
marks to clusters, as well as correcting and validating perceived
errors (i.e., Dr. Strangelove is not a Romance film, but a comedy).
Actions to overwrite text in tables are similar to the behaviors
of systems like StarSPIRE [34]. Moreover, some interactions
that users undertook evoked model steering mechanisms that
have also been proposed by prior works. Participants’ desire
to re-weight points is an updating approach that appears to be
similar to iteratively refining a weak learner via boosting [65],
but with manual intervention from a human. Re-weighting data
in accordance with user interactions has also been used in other
IML systems [33], [66].

While there are limitations on the full spectrum of interactions
our visual design probes could capture, overall, the alignment
between our findings and prior work is an encouraging demon-
stration of the probes’ capacity for capturing useful interactions.
Moreover, we can identify novel interactions with respect to
the combination of targets and actions that prior work has not
identified. For example, prior work does not identify probability
as an interaction target for clustering and classification, yet the
use of visual design probes surfaced it and identified several
consistent interaction strategies (Figs. 2 and 3).

B. RQ2: Participants Perceptions and Concerns

In addition to capturing participants’ interactions, we also
dive more deeply into the factors that influence their interaction
choices, including their hesitations. What is noteworthy about
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participants’ responses is the sensitivity of design choices on
participants’ willingness to interact with a system. For example,
building a system with diagnostic plots to contextualize the
effects of interactions would have been not useful to others,
especially non-ML experts. Prior work has also shown that the
magnitude of model changes is not always easy to capture [67].
Overall, these findings show the value of design probes to
anticipate challenges proactively and influence the final system
design.

1) Factors Impacting Interaction: Effects of Encoding De-
sign on Interactions The choice of visual encoding impacted how
‘inviting’ it was to engage in an interaction. For one participant,
the table was more inviting because when they see visualizations
they are “not sure how moving things around [in the scatter plot]
change anything [and I] see a table as a natural place to provide
row-level feedback.”[non-ML:06]. For other chart types, certain
interactions were less desirable. For example, some participants
would repeat a mark to indicate a movie belonged to two or more
genres. Most participants performed this mark repetition inter-
action with the dot and scatter chart encodings but did not do so
with the bar chart even though it was possible. When prompted,
one participant offered that “it just feels wrong” (ML:04). There
was also a general consensus among both ML and non-ML
experts that the scatter chart was the most difficult to reason with.
For many participants, the axes of scatter charts are tied to single
concrete attributes (i.e., age, height, eye color, etc.) and it was
difficult to reason about axes that represented embeddings or
dimensionally reduced data. Participant non-ML:05 described
the dissonance as ‘L1-interference’, not to be confused with
L1-regularization, which occurs when concepts are translated
from one’s native language (L1) to a new language (L2). Their
rationale was that using visualizations to steering models was
like learning a new language that was similar, but different, from
one that they were accustomed to.

Anticipating the Effects of Interactions: The choice of visual
encoding was also tied to participants’ ability to understand
and contextualize the effects of their interactions. Participants
expressed preferring simpler visual encodings because it was
easier to anticipate the effects of their actions:“ I feel like en-
gaging with the other charts I feel more confident [..] because[..]
when I change position [on the scatter chart] I will change the
distance to all the other points.” [ML:06]. Visual encodings
also evoked ‘degrees of freedom’ that a participant could use to
interact, with too many being overwhelming: “I think I prefer
this vis [bar chart]. There’s just too much freedom in the scatter
plot”[ML:05].

One way to ameliorate this challenge is to include additional
visuals for contextual information. Our visual design probes
were intended to give participants the opportunity to raise these
contextual needs - and they did so. Model explanations were
commonly requested, especially amongst the non-ML experts.
Participants with an ML background also wanted to view ad-
ditional diagnostic plots to assess model performance, which
they felt would help them better understand and contextualize
the effects of their actions: “I would love to be able to do this
[action] and have the model spit back out, what’s the AUC
looks like” [ML:04]. Non-ML experts did not express interest

in seeing diagnostic plots. Interestingly, there was disagreement
amongst participants towards the value of model diagnostic and
performance metrics, with one participant summarizing this
tension succinctly: “I am little confused if what we’re trying
to do is see how good the model trains vs how well the model
represents reality [...] you can have an accurate model or a
representative model”[ML:06]. Prior work in interactive ML
systems also emphasizes the importance of building representa-
tive, over strictly accurate, models [68].

Concerns about Injecting Bias: Three participants (two non-
ML experts and one ML expert) articulated strong concerns
about injecting bias into the ML model as a primary reason
they would hesitate to engage with a visualization to refine
an ML model. For one non-ML expert, it was a reason not
to engage at all – even if they expressed disagreement with
the model results, they would still refrain from interacting due
to concerns of bias: “maybe I really disagreed with it[ the
classification ] but it is my own view imposed on something cul-
tural [a movie]”[non-ML:08]. One non-ML expert also doubts
their expertise to introduce model refining changes but would
feel more confident if they knew safeguards existed: “I really
think that human safeguard with the expertise is a necessary
step”[non-ML:03]. Participants also indicated that the model re-
finements should be considered experimental and were not to be
applied to production settings. Overall, these findings show that
participants are aware of their potential to introduce bias and this
impacts their willingness to steer the model. While additional
components to the IML systems (i.e., model explanations) could
help address these concerns, participants’ comments also point
to the importance of socio-technical structures that include peer
safeguards as being important to them.

2) Learning From Interactions: As participants interacted
with visual encodings, the study administrators initiated re-
sponses to their actions. We asked participants what their ex-
pectations were toward what the model was learning, how often
it should update, and how they interpreted the responses.

Frequency of Model Updates: Participants wanted model
feedback in real-time, but they wanted to control the frequency of
updates and to only ‘commit’ to certain changes only once they
were satisfied. This form of visual speculative execution [69]
aligns with the refine-forecast model update modality described
by Strobelt et al. [70].

Learn from Minor Examples, not Major Refinements: Partic-
ipants expected the ML model to learn from a small number of
interactions. Participants consistently interacted with the marks
of movies they were more familiar with than others; they did not
express the desire to make changes to those they were unfamiliar
with. Additionally, all participants articulated prioritizing their
interactions and placing different emphasis on different types of
errors: 1) instances where the model was outright wrong (i.e.,
predicted that Dr. Strangelove is a romance); 2) instances where
the model was not completely wrong but should be nudged in a
different direction (i.e., whether Die Hard is an action or holiday
movie); 3) instances where the participant disagreed with both
the predicted and labeled genre and wanted to provide their own.
Personal notions of how incorrect the model was, and the ‘extent
of error’, also dictated how much weight the model should give
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these modifications, with error correction given a higher weight
than nudges; we discuss this observation in the next subsection
(Section V-B2).

It is unlikely that even using their own dataset a participant
is intimately familiar with each data point. We argue that par-
ticipants will always have some prioritization strategy based on
familiarity with some subset of the data over others. It is also
important to consider that datasets are frequently reused both
in research and in practice [71]. It may be both interesting and
relevant to capture which subsets are explored and by whom.
Interestingly, two participants astutely observed that many other
people view and interact with these visualizations, and they
wanted a way to see the changes others had made.

Incorporating Uncertainty to Interaction Inputs: Many par-
ticipant concerns and hesitations toward interacting with data
encoding marks of visualizations can be summarized by their
desire to add uncertainty to their interactions with the model.
Nearly all participants articulated that different types of interac-
tions allowed them to convey a different amount of uncertainty.
For example, changing the size of the mark, its color gradient,
or transparency were seen as imprecise interactions meant to
convey a larger sense of uncertainty. Conversely, overwriting a
value or changing a mark’s position was meant to convey less
uncertainty. Participants had different preferences for conveying
uncertainty. Some prefer less precision: “feel that the confidence
is more easily visualized here [...] a circle is much easier to say
‘Oh I want to make it bigger or smaller compared to a number
where I have to guess some random number [to change it to]”
[non-ML:06]. While others wanted more precision and control:
“I would want to move the points individually, there could be
more precision like that [...] because then I can have more
control over how confident I am reclassifying something.’’[non-
ML:04]. The choice of visual encoding did impact a participant’s
ability and willingness to convey a notion of uncertainty. Data
targets that participants acted on in other visual encodings were
not targeted in others:

Admin: In the previous vis you changed the confidence via the [mark]
size, do you want to do that in the table?

non-ML:07: No (emphatic) and I don’t know why. I mean I guess
because it’s numbers, don’t ever change the numbers.

Prior work on semantic interactions had considered human
inputs to be a kind of ‘soft data’ [33] that the model must
calibrate against what is learned from the training data. However,
we find that participants also want to convey uncertainty more
explicitly through their interactions than the notion of ‘soft data’
accommodates. Kim [72] introduced the concept of an interacted
latent variable that more closely approximates participants’ ex-
pectations. Interacted latent variables explicitly include the input
uncertainty from the human to calibrate human inputs against
what is learned from the data. In applications of a Bayesian
Case Model, Kim [72] asks participants to explicitly provide
their level of certainty via an input widget, but future work could
explore inferring uncertainty directly from interactions.

C. RQ3: Impacts of ML Expertise

Finally, we consider how ML and non-ML experts differed in
their interactions and perceptions. Individual differences aside,
non-ML experts, in particular, saw the benefit of using a vi-
sual and interactive ML system to help them collaborate with
their ML expert peers. This perspective from non-ML experts
impacted what they wanted out of an IML system.

ML Experts and not Substitutes for non-ML Expertise: The
preceding results have already alluded to some of the common-
alities and differences between ML and non-ML experts. Here
we summarize the key points. If we consider only the set of
target-interaction pairs (Fig. 2) we see an overlap between the
interactions ML and non-ML participants would undertake. We
also see that both groups would interact with similar data tar-
gets (predicted genre, and probability). While participants from
both groups would also introduce new data targets (i.e., Multi-
class Genres), in our study, ML experts introduced more (data
weights, similarity) compared to non-ML experts. The most
evident difference was toward additional information partici-
pants expressed they needed to reduce cognitive load. Non-ML
experts preferred explanations of the model’s behavior, whereas
ML experts wanted more performance metrics (Section V-B1).
Both groups felt this additional information would inform their
interactions and participants assess their effects. While both ML
and non-ML experts at times declined to engage with the visual
design probes, their reasoning was different (Section V-A2).
However, personal preferences were more indicative of whether,
and how, participants interacted with the visual encodings. In
summary, our findings support prior research [11]. that, despite
similarities, ML experts are not a sufficient proxy for non-ML
experts when developing IML systems.

Working Collaboratively With Others Several non-ML experts
also expressed the desire to comment on specific changes, either
as a reference for themselves or with ML experts they collabo-
rated with. One participant indicated they would use interactive
model refinement to provide feedback to the ML experts on
their team: “I would love to prototype models because that
would let me refine my own notes and recommendations to the
person that is potentially designing the model”[non-ML:03].
Prior research [20], [73], [74] has shown that such collaborative
modes of interaction were desired but largely absent from exist-
ing tools. Moreover, recent studies show both the necessity and
value of challenging the so-called ground-truth of ML data [75]
by enabling wider collaboration between data workers [76],
[77]; our study suggests that interactions could facilitate this
collaboration.

D. Summary of Findings

Our study elicited 43 unique interactions that define a set
of data target and interaction pairs (Fig. 2). Through these
interactions, participants not only modified existing data, but felt
that they could introduce new data (class genres, similarity, and
data weights) to steer a classification model. We were also able
to capture a myriad of considerations that guided participants’
interaction - including hesitating or refining from interacting.
We contextualize our findings between ML and non-ML experts,
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showcasing similarities and differences between these groups.
Overall, our findings both align with and extend interactions dis-
covered in prior work (i.e., [38], [44], [50]), which demonstrates
the utility and value of data and design probes for developing
visual and interactive ML systems.

VI. DISCUSSION

Data and design probes provide a canvas for participants and
researchers to co-create elements of an interactive system [14].
Gathering empirical data prior to the development and imple-
mentation of IML systems, including those used for visual
analysis, is critical to aligning the design of these systems with
the needs and expectations of end-users. Our research and its
findings have explored the use of data and visual design probes
for conducting pre-design empirical research toward the creation
of visual and interactive machine learning systems. Collectively,
our probes and elicitation study revealed that users consistently
target specific types of data with a varied, yet consistent, set
of actions (Fig. 2). We demonstrate that probes are capable
of producing tangible artifacts, from participant utterances to
their design choices, and we suggest that these can be used to
stimulate a more informed discussion around the design and
development of visualizations for IML systems. Furthermore, as
ML and AI systems grow in complexity and implicate a wider
group of stakeholders, it becomes even more important to align
these systems with human needs and expectations. Our findings
also show that probes are useful tools for teasing apart both
differences and commonalities across the continuum of ML/DS
expertise. We now reflect on the implications of our findings for
developing visual and interactive machine learning systems.

A. Designing Visual & Interactive ML Systems

Our initial goal was to use data and design probes as a pre-
cursor to developing an IML system. However, the complexity
of the interaction design space and context for these interactions
gave us pause. Our findings suggested challenges and limitations
of ML models and the incorporation of human refinement that
impacts IML system design. While data and design probes do not
resolve these issues, they appear to surface them and provide an
empirical basis for discussing trade-offs of different approaches
without prematurely committing to design choices

Human Goals and IML Brittleness: What surprised us about
our findings was the tensions they surfaced between what people
wanted to do and what present ML models are capable of. As
an example, participants wanted to exercise control over both
the class label and classification probability; Die Hard should
be both a holiday and action movie but with a higher prediction
probability on the action genre. Accommodating this goal is not
straightforward. Should an ML model be refined to reflect an
end-users expressed uncertainty toward specific data points and
classes? Should the initial classification problem be flipped to
be treated like a regression problem? Participants also added
bespoke classes of movies, which introduce out-of-distribution
issues should they wish to use their interactively refined model
for further prediction. As one participant indicated (see Sec-
tion V-B2), the desired features for a system tend to default to a

model-centric perspective, focusing on accuracy performance,
and do not accommodate human-centric desires like the repre-
sentativeness of data.

Learning From Human Refinement: Refining machine learn-
ing models through human feedback via visual encodings have
been explored using both reinforcement [66] and active learn-
ing [45]. However, these studies present users with a fixed set of
visual encodings and do not ask the critical question: do users
want to interact? The answer from our study appears to be that
it depends. Our findings suggest limitations in the amount of
feedback participants wish to provide (Section V-B2 and V-A1),
are impacted by the choice of visual encoding and their ability
to understand them (Section V-B1), their comfort initiating
such interactions (Section V-B1), and finally, their preferences
to refine ML models via code not by interacting with visual
encodings (Section V-A2.) While reinforcement learning from
human feedback (RLHF) is showing promise for large language
models [78], the efficacy of such an approach for other types of
data is under-explored as is the medium of interaction (e.g., text
prompts vs direct manipulation).

Our study may also have unintentionally captured refinement
by voice because study administrators prompted participants
to discuss the rationale, which the Wizard could also use to
craft a response. Our study focused participants’ attention on
direct manipulations of visual encodings, thus the effect of voice
was not directly under study and likely incidental. However,
exploring such multi-modal interactions could be an interesting
trajectory of future work.

Providing Feedback to Humans: Finally, an often overlooked
dimension is communicating to people what the effects of their
actions were. We left this consideration entirely open to par-
ticipants to dictate, both with respect to the frequency (Sec-
tion V-B2) and type (Section V-C) of feedback. Here we found
that expertise dictated what participants expected to see, with
those receiving more formal training expecting to see typical
performance metrics while non-experts preferred explanations.
However, what was more surprising was that the people also
wanted feedback from other humans as part of the refinement
process. Our results suggest two modes for an IML system.
An individual mode that allows analysts of varying expertise to
prototype and refine ML models and a complementary feedback
mode that allows participants to collaborate with others in the
refinement process. Per our results, the feedback mode may
extend further to also show how different individuals interact
with or annotate data encoding marks.

B. Limitations

The design choices and implementation of our probes as well
as our study population and size are limitations of our research.
While we made these deliberate choices with the intent to mini-
mize the number of assumptions our approach made toward user
needs and expectations, we also acknowledge the effects these
choices have on our findings. We chose to develop a minimal set
of probes, that made the least assumptions about the components
of an IML interface, instead eliciting these aspects from partic-
ipants and the ML model. For purposes of feasibility, we also
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limited the number of data points in our study to fifty. While
we provide a rationale for these and other choices, there are
aspects of the interactive experience that our probes maybe not
be able to capture. Scaling design probes, without compromising
the value of free expression and creativity that these probes are
intended to provide, is a fruitful topic for future work. These
design choices may limit some of the generative power of the
probes to elicit novel encodings and interactions. The probes are
best suited to identify the alignment between targets and actions;
the brittleness around this combination may stimulate discussion
of the need for novel encodings and interactions, but are not
guaranteed to derive them. To evaluate the trade-off between
scalability and free expression of our research approach, we
would need to implement a system. However, for the reasons
described in Section VI-A, this too would have limitations for
a proper assessment. We speculate that it may require several
different systems that experiment with approaches to human
refinement to fully evaluate these trade-offs. Lastly, the study
size of 20 participants, while commensurate with visualization
research on interactive machine learning and elicitation stud-
ies [38], [42], [44], [59], [61], [66], may not to capture the total
spectrum of non-ML and ML expert perspectives. While these
limitations are unlikely to hamper the value and utility of data
and design probes for visualization research, they do provide an
outline for the reasonable scope of our approach.

C. Future Work

There are several fruitful avenues for future work that expand
on our research methodology and its findings. An immediate
next step is to use the findings of our elicitation study and
implement a visual and interactive machine learning system.
However, our probes as point to many interesting challenges
that cannot be solved by the implementation of a single system
(Section VI-A) and that remain open research problems for
future work. One interesting area of future work is to expand
the definition of so-called “soft data” [33], by allowing people
to add their own perceptions of uncertainty into model feedback.
Prior work by Kim [72] provides an interesting avenue via inter-
acted latent variables, which could be explored concomitantly
with visualization research in Bayesian modeling [79], [80] and
uncertainty [81], [82]. Another interesting area of future work
is to leverage semantic interactions to investigate how people
construct and label datasets. For non-ML experts, or perhaps
even the lay public more generally, interacting through visual-
izations may be a more accessible way to communicate their own
personal notion of a “ground truth” [75] and even elicit richer
contextual information than current approaches afford [45], [76],
[77], [83], [84]. Finally, we see promise in further exploring
the ways that semantic interactions can facilitate collaboration
amongst teams of data workers and especially between ML
and non-ML experts. This team collaboration appears to add
safeguards to the processes of updating ML models as a greater
number of non-ML experts begin to undertake this task. Of in-
terest would be to examine whether semantic interactions could
enable an asynchronous and multi-user collaboration around
model refinement.

VII. CONCLUSION

Visual and interactive machine learning systems can provide
avenues for data analysts with varied ML expertise to steer
ML models with human guidance. However, designing such
systems is uniquely hard and may make many assumptions
about the needs and expectations of end-users. We examined
the use of data and design probes to elicit how participants
would interact with visual encodings, via direct manipulation,
to update an ML model. Our findings show that the use of
probes can not only capture a design space of interactions but
also participants’ perceptions and hesitations toward interacting
with an ML model. Overall, our study demonstrates the value
of expanding the visualization research toolbox to include data
and design probes as a way of gathering formative empirical
evidence for developing IML systems.
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