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Figure 1: We developed an artifact taxonomy that captures both human and ML/AI processes in automated data work. We assess
our taxonomy’s utility through a collaboration with an enterprise software development team creating an AutoML system. .

ABSTRACT
Automated Machine Learning (AutoML) technology can lower bar-
riers in data work yet still requires human intervention to be func-
tional. However, the complex and collaborative process resulting
from humans and machines trading off work makes it difficult to
trace what was done, by whom (or what), and when. In this research,
we construct a taxonomy of data work artifacts that captures Au-
toML and human processes. We present a rigorous methodology
for its creation and discuss its transferability to the visual design
process. We operationalize the taxonomy through the development
of AutoML Trace a visual interactive sketch showing both the con-
text and temporality of human-ML/AI collaboration in data work.
Finally, we demonstrate the utility of our approach via a usage sce-
nario with an enterprise software development team. Collectively,
our research process and findings explore challenges and fruitful
avenues for developing data visualization tools that interrogate the
sociotechnical relationships in automated data work.
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1 INTRODUCTION
Data work comprises multiple interrelated phases that leverage
statistical and computational techniques for data preparation, anal-
ysis, deployment, and communication [15]. The skills required to
conduct data work remain sufficiently complex, making it inacces-
sible to many experts with the relevant domain context but needing
more technical acumen [44]. Recent innovations have developed
techniques that automatically carry out data work, for example,
model selection or certain data preparation steps, thereby lowering
barriers of use to non-technical experts [18]. Initially, this so-called
automated machine learning technology (AutoML) focused primar-
ily on the analysis phase. However, recent research is pushing the
boundaries of AutoML to encompass a more end-to-end data work-
flow [14, 36, 44, 119]. The expanded scope of AutoML can now

https://osf.io/3nmyj/?view_only=19962103d58b45d289b5c83421f48b36
https://osf.io/3nmyj/?view_only=19962103d58b45d289b5c83421f48b36
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3580819
https://doi.org/10.1145/3544548.3580819
https://doi.org/10.1145/3544548.3580819
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3580819&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Rogers, et al.

involve automating wrangling in the data preparation phase, hy-
perparameter tuning, and algorithm selection in the analysis phase
alerts to drift within a deployed model and even auto-generated
reports for communication and dissemination. However, in practice,
AutoML still requires considerable human labor and coordination
to be functional [14, 21, 109]. Moreover, these prior studies point
to friction amongst data teams when AutoML remains a ‘black
box’ and it is difficult to interrogate how people collaborate with
AutoML technology to complete data work. Even if full automa-
tion were possible, human oversight and intervention are still de-
sired [14, 44, 50, 101]. Unfortunately, existing AutoML tools rarely
consider this human element, resulting in many unaddressed needs
even as this technology advances. To bridge this gap, we explored
how visual analysis could help technical and non-technical experts
trace AutoML-assisted data work.

To acknowledge the shared labor of AutoML and humans, we
treat the challenge of traceability in automated data work as one of
human-ML/AI collaboration. Recent research from the HCI commu-
nity [112] highlights several difficulties in human-ML/AI collabora-
tion, and two issues were especially motivating in our research. The
first challenge is that human-ML/AI collaboration adds uncertainty
to the capabilities and outputs of an ML/AI system. They assert that
this uncertainty is difficult to address with existing design method-
ologies. Though techniques and visual systems do exist to make
AutoML processes more transparent through provenance tracking
and auditing (e.g., [70, 84, 87, 103]), these approaches often focus
on the analysis phase of the pipeline, prioritizing machine learning
engineers and data scientists over data workers with less technical
expertise. This gap is significant for the development of AutoML
systems, as it does not account for the diversity of teams involved
in human-ML/AI collaboration [4, 14, 37, 40, 55, 72, 102, 109]. De-
veloping systems to support transparency for the full spectrum of
data workers is essential, albeit challenging [81]. This reflects the
second challenge Yang et al. identify in their work: close collabo-
ration between user-oriented researchers and ML/AI engineers is
important, but there are barriers to this collaboration stemming
from a lack of mediation for such an interdisciplinary dialogue,
such as “shared workflow, boundary objects, or a common language
for scaffolding” [112].

We encountered these challenges of human-ML/AI collaboration
in our work with the enterprise team. Our initial goal was to de-
velop a solution for visually tracing human and AutoML processes
across a data workflow facilitated by their software. However, we
realized the collaboration was missing a common language for
shared discourse for their developing AutoML system. Through
the lens of the broader HCI literature, and Yang et. al. in particular,
what we lacked were boundary objects – abstract or concrete infor-
mation that established a shared understanding for collaboration
with the software team [43]. We established that we needed first to
characterize what could be captured in an AutoML pipeline from
both humans and automated processes before we could develop a
visual analysis tool.

Research in human-human collaboration and knowledge sharing
has highlighted the importance of capturing artifacts [47, 49] for
tracing [27, 59, 95] complex collaborative processes. Grounding
our research in this prior work and Yang et al. [111], we present
our approach for making automated data work traceable through

developing an AutoML artifact taxonomy and the AutoML Trace
visualization tool. Our taxonomy is drawn from examining both
existing and theoretical AutoML and human-ML/AI interactive
systems. It defines the broad scope of both human and AutoML-
derived artifacts. The precise meaning of an artifact is dependent
on its context. In our research, artifacts represent tangible and ab-
stract items generated by humans (i.e., goals, tasks, documentation,
datasets, source code, etc.) or AutoML processes (e.g., feature sets,
the choice of model, automated insights, etc.) within data work. The
taxonomy served as a boundary object that scaffolded for dialogue
with the software team, allowing us to ideate around their existing
system and outstanding end-user needs. We further operational-
ize this taxonomy through AutoML Trace- a high-fidelity visual
interactive sketch that, in the words of Greenberg and Buxton [35],
aims to “make vague ideas concrete, reflect on possible problems and
uses, discover alternate new ideas, and refine current ones.”. Develop-
ing an interactive sketch, instead of a high-fidelity and more full-
featured prototype, allowed to engage more flexibly in a co-design
process [82] with the software team. AutoML Trace identifies, cap-
tures, and contextualizes artifacts defined by our taxonomy and
shows their dependencies and evolution over time. Although we
apply AutoML Trace to our collaborators’ AutoML software, it can
be applied to others.

Collectively, our research presents three contributions. The first
contribution of this work is the AutoML Artifact Taxonomy
that accounts for the nuances of human-ML/AI collaboration across
the continuum of automation in data work. Two additional con-
tributions of this work emerged as a natural progression from the
development of the taxonomy and our engagement with the en-
terprise team. The second contribution is the AutoML Trace
interactive sketch that operationalizes our taxonomy and
serves as a medium for engagement with AutoML systems. Finally,
the third contribution is a definition of traceability that char-
acterizes what an understandable and observable data workflow
involves. While we focus primarily on the challenges of automating
data work, we also reflect on using taxonomies and visual sketches
to broadly develop frameworks and systems for designing human-
ML/AI collaboration.

2 RELATEDWORK
We review related work concerning taxonomies’ utility for creating
a common language within and between complex systems, exist-
ing taxonomies for AutoML and data visualization, and existing
visualization systems for AutoML that can surface these artifacts.

2.1 Taxonomies, Ontologies, and Schemas
Taxonomies provide structure to knowledge and enable comparison
and identification of relationships between items [67]. The Vis, HCI,
and ML communities use taxonomies to inform the development
of systems, define requirements, and provide a common language
for communication [20, 48, 51]. We intended the same utility for
our taxonomy. However, we sought to develop our AutoML arti-
fact taxonomy in a rigorous manner to ensure our work is seated
on a solid theoretical foundation. Our taxonomy development is
informed by the work of Nickerson et al. for rigorous taxonomy
development in information systems [67], which was motivated
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by the often ad hoc methods for constructing taxonomies identi-
fied in their own community. We reviewed existing taxonomies
in AutoML and data visualization to understand their respective
conceptual characterization, utility, and granularity in relation to
our taxonomy. We group existing taxonomies and similar works
into three groups: ML processes, human-in-the-loop automation,
and visual analysis.

2.1.1 Provenance, Tractability, and Reproducibility in ML Processes.
We are not the first to formalize ML and AI processes as a taxonomy.
Tatemen et al. [93] proposed a taxonomy for the reproducibility of
ML research. Their research identifies low to high reproducibility
examples based on the artifacts their research process produces.
With a similar aim of reproducibility, Publio et al. [74] proposes
ML-Schema, an ontology for representing and interchanging arti-
facts of ML processes, which includes code, data, and experimental
documentation. They aim to automatically produce MLmodel meta-
data descriptors to improve the interpretability of ML processes.
Souza et al. [87] builds on the ML Schema along with PROV-DM to
create a specific schema for provenance tracking of multiple ML
workflows. While these taxonomies and schema for provenance in
ML are important, they do not sufficiently account for the ways
that human processes and interventions at various stages, as our
research attempts to do. However, in developing our taxonomy, we
also considered how existing taxonomies connect to ours to add
more granular details to a specific data science process.

2.1.2 Human-in-the-loop and Hybrid Automation. In their charac-
terization of provenance in visual analytics, Ragen et al. illustrate
the heterogeneity of a given workflow as well as the importance
of “capturing user thoughts, analytical reasoning, and insights,” [75].
More recent work [19, 97] generated taxonomies that begin to ex-
plicitly account for a variety of human-generated artifacts in ML
processes. Dellerman et al. [19] focuses on human intervention in
AutoML technology; their work most closely approximates ours in
spirit and uses the same methods that we do to develop a taxonomy.
However, these taxonomies primarily focus on the model optimiza-
tion phase, whereas ours is considered an end-to-end data science
process, from preparation to communication. Taxonomies from
the Human-Computer Interaction (HCI) and Computer Supported
Cooperative Work (CSCW) communities[44, 101] propose ways for
marrying different levels of automation, across an end-to-end data
science process, with human collaboration. Karamaker et al. [44]
propose six automation levels depending on the extent of success-
fully automated tasks. Their appendix provides a detailed view of
different ML approaches, the scope of automation, and the role
of human interventions. Wang et al.. [101] suggest similar levels
of human-directed and system-directed automation, which they
describe within a larger human-in-the-loop AutoML framework.

2.1.3 Visualization of ML Provenance, Traceability, and Models. As
our approach explores how artifacts can be surfaced via data visual-
ization, we consider prior research in the visualization community.
Sacha et al. [77] formulate an ontology for visualization-assisted
ML, which fits into the paradigm of human-in-the-loop ML/AI. It
represents artifacts as input and output entities that constitute data,
models, or knowledge; however, they do not provide more granular
information on the properties of these entities. Spinner et al. [90]

presents a framework for explainability in visual and interactive
ML whose processes align with those of automated data science
processes driven by AutoML technology. They also primarily view
artifacts as input/output entities but do not further define what
those entities are.

2.1.4 Bridging the Gap. These different taxonomies, ontologies,
and frameworks share the goal of defining a set of entities and
actions across automated data science work. However, they lack a
consistent description of entities generated or shared across data
work. We propose artifacts to be this entity. By developing our
taxonomy, we argue that our research can help bridge these prior
works.

2.2 AutoML Visualization Systems
Interaction and visualization of machine learning pipelines both
facilitate user engagement and intervention and build trust in the
results of an ML process [8]. Many visualization tools for AutoML
have emerged in recent years. ATMSeer [103] performs an auto-
mated search for machine learning models and visualizes the sum-
mary statistics from the search space for end-users with an automat-
ically generated dashboard of linked views. ModelLineUpper [64]
also uses multi-linked views of different visual encodings to com-
pare ML models generated by AutoML processes. AutoVizAI [104]
similarly explores the narrow scope of model configurations but
uses conditional parallel coordinate plots to visualize the model
generation across possible configurations. Lastly, Visus [83] targets
how domain experts specifically can tackle model building using
AutoML.

Other systems view AutoML processes more broadly, beyond
the modeling phase. PipelineProfiler [70] integrates with Jupyter
notebooks and provides an overview of the results using a matrix
juxtaposed with aligned views to indicate the different components
and outputs of the AutoML pipeline in each step. AutoDS [100] uses
a network diagram to show different possible ways to configure
an end-to-end AutoML pipeline. AutoDS exists as a stand-alone
tool or embedded with a Jupyter notebook. The Boba [56] system
and its underlying DSL use a similar visual design to AutoDS for
visualizing the stages and results of different data science processes.
The design inspiration for Boba builds off of earlier user studies
conducted by Liu [54] that visualized the analysis patterns of data
workers via a network diagram. Swatai et al. similarly found that
network diagrams effectively capture varied user paths through
interactive analytic flows [60]. Xin et al. [108] have leveraged this
graph structure to develop techniques for inserting humans into
automated machine-learning processes. Research is also oriented
toward capturing user interactions with visual analytics systems;
Knowledge Pearls [91] and Trrack [16] are two examples that also
use an underlying graph to manage and visualize analysis paths.

Through our taxonomy, we aim to broaden what artifacts are
visualized with additional context about the artifact’s origin, depen-
dencies, and history. We draw inspiration from the visual encoding
choices of these prior systems in the implementation of AutoML
Trace (Section 6).
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3 TRACEABILITY FOR HUMAN-MACHINE
COLLABORATION

Tracing the collaborative relationship between humans and ML/AI
processes is essential for ensuring the entire process of data work
is transparent and scrutinizable, not just the end product (i.e., the
model or result) [105]. The traceability of artifacts has been ex-
plored in software and design engineering contexts [76, 92], the
social sciences [47, 49], and knowledge management communi-
ties [27, 59, 95] for some time and has more recently been explored
for machine learning [11, 63, 84]. However, the definitions of trace-
ability vary widely. Here, we define traceability for ML/AI as
encompassing provenance, transparency, and context. Prove-
nance is the process of recording individual artifacts and their
origins; what generated the artifact and other artifacts dependent
upon it. Transparency concerns the ability to understand how the
model arrived at its conclusions. Finally, context indicates where
the artifact exists with the analysis. Here, we propose tracing arti-
facts within data work, from preparation to communication phases,
resulting from human-ML/AI collaboration across these phases
over time. We consider an artifact to be traceable if there is a clear
definition of what it is, how and when it was generated, and if there
exists a lineage of how it has changed.

4 MOTIVATION AND METHODOLOGY FOR AN
AUTOML ARTIFACT TAXONOMY

Taxonomies are a widely used system of knowledge organization
that hierarchically groups concepts into logical associations based
on shared qualities [67, 73]. They provide a common language to
speculate and build upon concepts that facilitate communication
within a team of diverse experts [79]. Prior data visualization re-
search has used taxonomies of tasks (e.g., [9, 52, 96]), data (e.g.,[7]),
and visual techniques to motivate tool development. Taxonomies
for AutoML and human-ML/AI collaboration have similarly been
developed (see Section 2), but their influence on tool development
is tenuous, lacking a consistent mechanism for development. As
a result, the robustness of taxonomies in the literature can vary
considerably in their quality and scope. Our taxonomy integrates
and reconciles existing taxonomies, frameworks, ontologies, as
well as artifacts of existing and theoretical systems, to provide a
comprehensive set of AutoML artifacts. We have adopted a robust
methodology from the information systems research that evaluates
conciseness, robustness, comprehensiveness, extensiveness, and
explainability [67, 73]. As part of our taxonomy contribution, we
describe our development approach, summarized in Figure 2, to
motivate the importance of robustness in taxonomy creation.

4.1 Methodology Overview
Nickerson et al. [67] and Prat et al. [73] define a multi-phased and
integrated approach to defining and evaluating a taxonomy. Their
approach is rooted in their definition of taxonomy as a set of objects
classified according to taxonomic descriptors, which are a hierarchical
set of dimensions, categories, and characteristics. Objects can refer to
a variety of things, for example, living creatures, types of products
sold in a store, or artifacts (as is the case here).

They define three phases of taxonomy creation: pre-development,
development, and evaluation. The pre-development stage defines

a meta-characteristic for the taxonomy objects and a set of end-
ing conditions for concluding taxonomy development. The subse-
quent development stage takes either an empirical-to-conceptual
or conceptual-to-empirical approach to define objects and their
properties. Finally, in the evaluation stage, the taxonomy is as-
sessed through an iterative process through a combination of ob-
jective and subjective criteria.

Reflecting on their methodology, Nickerson et al. [67] emphasizes
that a taxonomy is a ‘design search process’ with an intractable
solution. However, they argue, andwe agree, that theirmethodology
improves the resulting taxonomy’s transparency, robustness, and
extensibility. Here, we detail the choices we made through these
taxonomy development stages. Artifacts of our research processes,
which include notes, documents, and materials, generated across
the 8 iterations of taxonomy development are available online
1. Due to limitations of space, additional details of our taxonomy
and its development are presented in the Supplemental Materials
and annotated here with [SM1] (these are also clickable links). A
full description of these supplemental materials appears at the end
of this manuscript.

4.2 Pre-development Stage
4.2.1 Defining a Meta-Characteristic. The taxonomy development
process is initiated by delineating a concrete definition of a meta-
characteristic that describes the objects under study (Figure 2.1).
In our research, we define an object in the taxonomy to be
an AutoML artifact that is generated and exchanged by a
human or AutoML-driven task, which occurs across an end-
to-end data science workflow encapsulating processes for
data preparation, analysis, model deployment, and commu-
nication.

4.2.2 Defining Ending Conditions. We defined an a priori set of
objective and subjective ending criteria to evaluate our taxonomy
upon each development stage (Figure 2.1). If these criteria are met
in the evaluation stage, we conclude our taxonomy development.
The taxonomy’s structural stability across iterations is also part of
the objective ending criteria. To meet this ending condition, our
taxonomy should conform to the following criteria:

(1) No new dimensions, characteristics, or objects (artifacts) are
added or modified from the previous iteration

(2) No new dimensions, characteristics, or objects (artifact) were
merged and split

(3) At least one object (artifact) is classified under every charac-
teristic of each dimension

The subjective ending conditions are defined by Nickerson et
als [67] as the minimum criteria for the utility of a taxonomy. These
subjective conditions include conciseness, robustness, comprehen-
siveness, extensibility, and explanatory. As these are subjective
criteria, they serve as a function to reflect on the taxonomy’s inter-
nal validity.

1https://osf.io/3nmyj/?view_only=19962103d58b45d289b5c83421f48b36. This is an OSF
view-only link for the review process, meaning it does not collect any data that could
identify reviewers
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Figure 2: Overview of our taxonomy development methodology. We followed the methodology proposed by Nicerkson et al. [67].
The taxonomy development process consists of three stages. (1) The pre-development stage of the process involves defining a
meta-characteristic and the ending criteria for development. (2) The development stage is repeated in the process until the
ending conditions are met. This stage is done using one of two approaches, (A) empirical-to-conceptual or (B) conceptual-to-
empirical. (3) We determine whether the ending criteria are met in the evaluation stage of the process. If the ending conditions
are not met, we repeat the development stage until the ending conditions are satisfied.
4.3 Development Stage
The development stage begins with either an empirical-to-
conceptual (Figure 2.2.A) or conceptual-to-empirical approach (Fig-
ure 2.2.B). In the former, objects are identified from an available
data source, classified via quantitative (i.e., statistical clustering)
or qualitative (i.e., thematic analysis) methodology, and grouped
according to an emergent set of properties (characteristics, cate-
gories, dimensions). While in the latter approach, a set of properties
are conceptualized and used to identify data sources and objects
that are then subsequently classified. The approach taken can be
different at the start of each development stage. We used primarily
an empirical-to-conceptual identify objects for analysis.

4.3.1 Literature Sources. We define human and machine-generated
artifacts in automated data work from the research literature span-
ning Machine Learning, Human-Computer Interaction, Computer
Supported Collaborative Work, Information Visualization, and Vi-
sual Analytics. We sampled the research literature using two ap-
proaches. First, we gathered an initial set of 13 convenience sample
papers, familiarized ourselves with the methodology, and created
an initial taxonomy. The convenience sample was papers already
known to the authors and from quick searches for “artifacts Au-
toML”, “taxonomy AutoML”, “capturing AutoML” and “visualizing
AutoML” and subjectively selecting papers to discuss. Next, we
identified a systematic set of published research and pre-prints on
“AutoML”. The search was current to June 14th, 2021, and retrieved
153 articles from venues such as KDD, AAAI, NeurIPs, CHI, and
others. Most publications were retrieved from arXiv (100 of 153;
65%) and dated within the past two years. A complete list of all
sources used in our analysis and documentation on how they were
used is found in online materials. We conducted an initial scan of
all 153 papers. Based on this scan, we then developed inclusion
and exclusion criteria. We excluded papers that were too narrow in
scope because they focused on a highlight-specific technique. The
list of literature sources is available in [SM2].

4.3.2 Object Classification. We identified and extracted approxi-
mately 400 items from literature sources that could represent hu-
man or machine-generated artifacts. First, we coarsely classified
these items into phases of a data workflow (preparation, analysis,
deployment, and communication) [15]. Within these phases, we
further classified items into artifact groups. Finally, we used this
grouping to ideate a set of artifact properties. We use open and axial
coding techniques to derive the set of characteristics, categories,
and dimensions that describe the artifact’s properties. We used
descriptions and definitions from the object’s literature source text
for this coding exercise.We combined separate items as definitions
for artifacts, and their properties became clearer with each coding
iteration (i.e., T-SNE and PCA were combined into mapping trans-
formations artifacts because they both map data from higher to
lower dimensions). From the initial set of 400 items, we distilled
into a set of 52 artifacts. A full list of artifacts and their classification
is available in [SM1] and [SM1-F].

4.4 Evaluation Stage
After each development stage, we assessed whether we met our
ending criteria ( Figure 2.3). Per our definitions from [67] and [73],
the taxonomy is concise, robust and comprehensive if, at the con-
clusion of a development stage, objects can be comprehensively
classified with a sufficient and not excessive, set of dimensions,
categories, and characteristics. It is extensible if new dimensions,
categories, and characteristics can be easily added throughout it-
erations. Finally, it is explanatory if it can be used to describe the
nature of objects.

Our taxonomy development required eight iterations before it
met the ending conditions. Both authors read the literature sources,
extracted artifacts that met the definition of the meta character-
istic, classified those items, and finally grouped them according
to an evolving set of artifact properties. The authors met and dis-
cussed their individual classifications daily for a month. While we
arrived at a consensus, we did not attempt to resolve all conflicts,
ambiguities, or divergent interpretations exhaustively.

https://osf.io/qtrs6?view_only=19962103d58b45d289b5c83421f48b36
https://osf.io/h5ung?view_only=19962103d58b45d289b5c83421f48b36
https://osf.io/94mhe?view_only=19962103d58b45d289b5c83421f48b36
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5 AUTOML ARTIFACT TAXONOMY
Our taxonomy comprises 52 artifacts clusteredwithin eleven groups
by their properties. We defined the properties of these artifacts ac-
cording to a set of 4 dimensions, 17 categories, and 41 characteristics.
Importantly, no single AutoML system contains all of these arti-
facts [44]. Instead, we rely on an amalgamation of design decisions
made by individual AutoML toolkits, systems, and theoretical re-
search papers. We argue that by looking broadly at existing systems,
what they are, and what they aspire to be, our taxonomy can extend
to systems not yet developed. A summary of artifacts, their group-
ings, and the data science processes they belong to (in addition to
interactive processes) is in Figure 3.

5.1 AutoML Artifacts
5.1.1 Artifacts and Processes of Data Science Workflows. As innova-
tions in AutoML systems expand, so does the scope of task automa-
tion. As of this writing, many proposed systems do not exist for
practical use [44]. Leveraging a prior framework, we define an end-
to-end data science workflow as comprising preparation, analysis,
deployment, and communication processes. These stages also align
with defined tasks and automation levels for AutoML systems pro-
posed by Karmaker et al. [44]. Likewise, AutoML systems composed
of data science primitives [38, 70] are similarly compartmentalized
within these processes. While we imposed these processes on arti-
fact classification (Section 4.3), we also found that most artifacts
typically fit into one process. For example, the initial dataset is
an artifact, typically supplied by a human, in the data preparation
phase – future AutoML systems may be able to find these datasets
for data workers. The artifact would occupy that preparation phase,
but its properties would reflect its machine progenitor. Conversely,
a dashboard of the model’s results is an artifact that exists in a
communication process and likewise can be meticulously curated
by a human or be automatically generated [41].

AutoML artifacts are more than inputs and outputs to tasks
within these data processes. Artifacts can also be metadata or other
documentation created for or by data science processes. Prior work
has examined metadata in machine learning or software systems
and how they relate to provenance (Section 2.1). For example, orga-
nizational processes create human requirements documentation,
a human-generated artifact that can directly dictate data analysis
objectives and impact the choice of dataset or model.

5.1.2 Groups of Artifacts and Individual Artifacts. We now describe
artifact groups and examples of individual artifacts according to
their data science processes. For an illustrated example of the arti-
fact property hierarchy, see the breakdown for the “requirements
document” artifact in Figure 4. While the processes are presented
linearly here, in reality, they can occur in any order.

Preparation processes have two artifact groups: objectives
and data (Figure 4.2). Data work begins with some objective that
can be expressed in the form of analysis goals, requirement spec-
ifications, or tasks [30, 39, 48]. Goals can also be translated to
tasks [9, 44, 106] and intents [28, 85] that further define specific
analysis objectives. These objectives are necessary to define the
dataset for analysis and any transformations or augmentations to
the initial data and its schema representation [19]. These transfor-
mations can result from data cleaning or wrangling operations [45],

data splits [116], or mapping transformations. We also observed
that additional datasets are recruited in the preparation stage to
further benchmark model performance [30, 119] or evaluate its
robustness. Augmentations to the data can include human-supplied
semantic annotations [25]. We observed that the preparation stage
is still largely dominated by the activities of a single human or mul-
tiple humans working together. These activities are presently the
most time-intensive of data work [14], but also the most consequen-
tial [81]. As part of data preparation, we include exploratory data
analysis that produces either automated or human-curated sum-
maries, including descriptive statistics and visual summaries [107].

Analysis processes are most extensively covered by prior lit-
erature and encapsulate what many consider to be AutoML’s core
functionality. We define four groups of artifacts of analysis: those
pertaining to the individual model, an individual AutoML pipeline
configuration, the search space of all possible pipeline configura-
tions, and finally computation. The first set of artifacts concerns
the model, which includes its task (i.e., classification, regression,
clustering, or the various more nuanced tasks of neural networks)
aspects of feature encoding [11, 44, 111, 113], generation[101, 118],
and selection, as well as model optimization [69, 94, 110] (within
which we include the architecture of a model like a deep neural
network [42, 118]), and performance assessment [101].

However, the model is only one component [99, 111] or prim-
itive [38, 70] of an AutoML pipeline. The pipeline itself is deter-
mined by a broader search space of possible alternative configura-
tions [2, 26, 38, 80, 99, 103, 113, 119]. Tools that visualize AutoML
systems increasingly focus on the search space and pipeline con-
figurations [70, 103]. These two sources of artifacts compound the
selection of the final model as they determine the scope of what
form it may take. These three artifact groups, the model, pipeline,
and search space, share similar artifacts, including preliminary con-
figurations, performance assessments, optimization summaries, and
a descriptive summary of the fit (or search) computation.

More recent AutoML systems place computation more promi-
nently in the analysis stage. While these can include source
code [11, 101] (including analysis notebooks), they also include
system configurations and environments [11]. Recently, compu-
tational budgets [103] are used to calibrate model performance
against computation time.

We observed that AutoML systems automate as much of the anal-
ysis as is reasonable but include avenues for human intervention.
The complexity of AutoML systems makes it increasingly difficult
to trace how it arrived at the choice of a model unless the full spec-
trum of artifacts is considered. For example, a system that searches
a space of possible AutoML pipeline configurations is dependent
on both the initial configuration and the set of primitives available
to it. Imposing a computational budget will also limit the extent of
the search space explored.

Deployment processes apply a final model to a production
environment. We identified two groups of artifacts for deploy-
ment: those concerning verification and oversight. Verification ar-
tifacts result from monitoring the performance of a model (both
before and after deployment) [100]. They include the generation
of summary statistics, explicit comparisons to existing bench-
marks [116, 118, 119], and the detection of model drift or anom-
alies [13, 22, 90]. These artifacts are important to capture changes in
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Figure 3: Artifacts elicited from AutoML toolkits, libraries, systems, and user studies. We summarized approximately 400
artifacts from these sources into 11 Artifact Groups and 52 artifacts. The properties of these artifacts are further delineated

according to a taxonomy and a hierarchical set of dimensions , categories , and characteristics .
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Figure 4: Breakdown of the hierarchy of information for the (1) preparation phase process. Here we see the (2) artifact groups
and (3) artifacts for the preparation phase. Each artifact represented by a white circle has its own dimensions, categories,
and characteristics. This example shows the artifact properties for requirements documents (4). Each artifact has at least
one example from the four dimensions; source, transmission mode, and tasks. Some artifacts have multiple categories and
characteristics for each source. For example, requirements documents have two categories for both format and task.
the model over time and frequently feed into the oversight artifacts.
These oversight artifacts include documentation that describes the
model’s characteristics, for example, a model card [61], decision
forensic reports [100], provenance artifacts of use [90], as well as
documents governing the use the model [14, 100]. Oversight ar-
tifacts provide a key point of knowledge sharing where humans
monitor the model to ensure it is responsibly applied [100]. More-
over, these artifacts, automatically generated by an analyst, provide

important avenues for humans to intervene in automated work.
For example, suppose a deployed model in production begins to
exhibit poor performance on benchmark datasets. In that case, over-
sight artifacts can initiate a process where a human returns to the
analysis and manually re-initiates the model fitting processes.

Communication processes artifacts in our taxonomy are pri-
marily documents, both static (i.e., a report) or interactive (i.e., a
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Figure 5: Artifact properties are a set of hierarchical taxo-
nomic descriptors. The top level of this hierarchy is a dimen-
sion, followed by category, and finally characteristics.

dashboard) to report information. While communication encom-
passes humans communicating with each other, AutoML systems
must also communicate with humans. Once again, there is an op-
portunity to learn from human-human communication to make
human-machine communication more effective. Communication
artifacts include an automated summary of insights or an expla-
nation for the model’s decision-making. Modeling explanations
are automatically produced and are increasingly crucial for trans-
parency [62, 88, 90, 101].

Interactive processes are an outlier relative to other pro-
cesses. We believed they should be treated separately as they repre-
sent distinctly human actions that can not be automated but seek to
influence automated processes. Many artifacts in other phases can
be generated by some combination of human or machine actions.
We separate interactive processes into the artifacts of the graph-
ical user interface and the user themselves. Elements of the user
interface include bookmarked or saved insights [16, 107], annota-
tions [16, 25, 87]. Humans can also trigger or modify automated
processes [13] across data science processes. Increasingly, these
user actions are captured as behavioral graphs, interaction logs, or
interaction sequences [6, 12, 39, 91], that can be visualized [16, 91],
to influence a machine learning component through semantic in-
teractions [23, 29].

5.2 Artifact Properties
The AutoML artifacts described in the previous section were deter-
mined by their properties. We used the initial set of 400 artifacts
collected from the literature to derive a set of properties that al-
lowed us to further group them into a smaller set.

The complete set of artifact properties is shown in Figure 5, but
to avoid excessive repetition, a detailed breakdown of artifacts and
their characteristics is in Appendix A. While the initial goal of
taxonomization was to describe artifacts, we also found it useful
for properties to be able to compare them as well. For example, two
AutoML pipelines may include a feature generation phase, which
would produce a common artifact of a feature set. However, feature
generation can be done automatically in one pipeline, whereas in
the other, it is the job of a human. In both pipelines, the subsequent
hyperparameter tuning may be done automatically. We endeavored

for our taxonomy to describe a broad design space of AutoML
systems; both implemented and theoretical.

At the top level, our taxonomy has four dimensions that an-
swer the following four questions: “What generated the arti-
fact?” (Source), “Does it cross the boundaries between human
and AutoML processes” (Transmission Mode), “What shape does
the artifact take?” (Artifact Format), and finally, “What is its
intended purpose?” (Task).

The Source of an artifact indicates by whom, or what, it was
produced. We identified five sources: humans, an organization of
humans, the data, AutoML processes, and the computational sys-
tem. The first two sources distinguish between humans, acting
individually and collaboratively, and a general set of organizational
practices (i.e., business practices, legal or regulatory requirements)
that can influence these people. Calculations, transformations, and
other derivations from the initial dataset also produce new artifacts.
Finally, AutoML processes and the computational infrastructure
supporting that automation produce complementary but separate
artifacts. For example, the former might produce a running sum-
mary of the model’s loss, whereas the latter records and returns
code failures or when computational budgets have been reached.

The Transmission Mode properties describe whether the arti-
fact has crossed boundaries between human and AutoML sources
and in which direction. We have prioritized artifacts that are likely
to transmit between humans and machines (ℎ →𝑚) and vice-versa
(𝑚 → ℎ); we determined directionality from reading the literature
sources. Some artifacts that do not cross boundaries in the spe-
cific AUtoML system are critical to include as they add context to
boundary cross artifacts.

The Artifact format property enables comparison between
different AutoML pipelines. In our taxonomy development, we ob-
served that artifact formats were closely tied to the design choices
of AutoML systems. For example, AutoML systems that targeted
an ML expert end-user had artifacts limited to single values, texts,
or tensors when displaying this information. Those that target do-
main experts presented the same data visually or interactively. We
summarize four formats: single values, multiple values, specifica-
tions, and reports. Visualization systems and dashboards that we
discuss in Section 2 are considered reports that have either static
or interactive characteristics.

The Task describes the affordances of the artifact. We proposed
four categories of tasks: informing, governing, sharing, and steering.
Artifacts that inform, and describe the prior or current state of the
data science pipeline. These can include reports, summary statistics,
or a dashboard (among other possibilities). Governing artifacts are
specific to regulating, auditing, and monitoring both automated and
human-driven work. Sharing artifacts are intended to be distributed
amongst humans, not just between analysis and the AutoML system.
Finally, steering artifacts intervene anywhere in the data science
pipeline to make a change. These artifacts result from human or
automated processes acting on, for example, an alert to a data
quality issue.

5.3 Further Extension
The taxonomy itself can be further expanded over time, accommo-
dating new artifacts that emerge as the capabilities of AutoML



AutoML Trace CHI ’23, April 23–28, 2023, Hamburg, Germany

systems expand or to include highly bespoke qualities of spe-
cific system implementations. As we developed our taxonomy, we
constantly reflected on its extensibility as part of our evaluation
criteria. Specifically, as we merged the many different prior tax-
onomies specific to AutoML and machine learning [19, 93, 97],
typologies of visual analysis [9, 48], and other classification sys-
tems [44, 77, 87, 88], we scrutinized stability of our taxonomy to
incorporate these changes. Moreover, our stopping criteria were
predicated on the stability of the taxonomies structure. We rely
on future work to continuously reflect on its extensibility, as the
present taxonomy incorporates currently available and relevant
prior research.

6 AUTOML TRACE
We operationalize our artifact taxonomy through the creation
of AutoML Trace, an interactive visual sketch [35]. Visual sketches
are lower fidelity compared to more complex interactive proto-
types but serve an important role in facilitating co-creation activi-
ties between researchers and their collaborators [82]. By compar-
ison, Sanders et. al. [82] define prototypes to be more mature in
their conception and execution, which, in concurrence with Buxton
and Greenberg [35], can be counterproductive for co-creation and
ideation. In this spirit, we develop ˜AutoML Trace to investigate
the utility of applying our taxonomy to the visual analysis of an
existing AutoML system. Although our goals are ultimately to
develop AutoML Trace with the purpose of facilitating a dialogue
with our collaborators (presented in Section 7), AutoML Trace, to-
gether with our taxonomy, can be repurposed to analyze AI/ML
systems more generally. We especially aimed to emphasize the hu-
man element through the capture of artifacts and the delineation
of their properties to illuminate human-ML/AI collaborative pro-
cesses within AutoML systems. This section describes (1) how our
taxonomy enables us to identify, classify, extract, and visualize both
human and machine-derived artifacts (2) the overall design of our
interactive sketch, AutoML Trace, including the data and tasks it
supports.

6.1 Operationalizing our Taxonomy
Our AutoML artifact taxonomy captures human and machine-
derived artifacts in an end-to-end pipeline of data work, from
preparation to communication. Individual artifacts and their prop-
erties allow us to accommodate different degrees of automation,
from human-driven to fully automated, and the hybrid modes in
between [14, 44, 72]. In hybrid automationmodes, we capture the di-
rectionality of work — from humans-to-machine processes (ℎ →𝑚)
and vice-versa (𝑚 → ℎ). With the addition of temporal information,
we use our taxonomy to derive both the context and the time of
artifacts’ creation. By continuously capturing artifacts across an
automated data work pipeline, we can show the evolution of data
work and human-ML/AI collaborative processes over time.

6.1.1 Artifacts utilized in AutoML Trace. We used artifacts cap-
tured from the enterprise team’s AutoML pipeline within our in-
teractive sketch. Using their artifacts directly not only provided
an example of how our taxonomy can be operationalized with a
live system but also promoted meaningful engagement with data
important for the team’s AutoML tool development. The first step

to operationalize our taxonomy is to leverage it for identifying and
characterizing artifacts from the AutoML system. Some artifacts
can be captured programmatically as inputs to AutoML systems or
outputs from different APIs. For example, a human can specify goals
or targets through an interactive interface. Alternatively, AutoML
processes can initialize and traverse a search space to find optimal
sets of model parameters. Both the user input and the search space
exploration can be captured from system logs. Other artifacts are
manually captured. For example, documents that state a system’s re-
quirements or presentations communicating the results need to be
captured from an existing document management system or other
curation efforts. As these items are captured, either automatically
or through curation efforts, the context of their creation (e.g., prepa-
ration, analysis, deployment, or communication stage) is provided
through the taxonomy’s structure and the artifacts’ properties.

Our taxonomy allows us to identify the way in which these
artifacts are generated and assign properties to them via manual
annotation. For example, designers and ML/DS engineers can dis-
cuss the various inputs and outputs in the workflow, identify the
type of artifact it may be, and describe them consistently with the
taxonomy’s controlled vocabulary. AutoML Trace can support this
process by defining a default template of artifacts and visually in-
dicating what is captured or absent. However they are captured,
the final result is a collection of artifacts traded between humans
and automated processes in data work. Though we used a specific
pipeline from the team’s AutoML system in AutoML Trace the
captured artifacts are characterized by properties of our taxonomy
developed for a range of AutoML systems. Considering the scaffold-
ing provided by the taxonomy for artifacts, AutoML Trace remains
applicable to other pipelines. Future work would provide evalua-
tion of the interactive sketch for engagement with other pipelines
as well as provide further automation of the artifact annotation
process.

6.1.2 Tracing the chronology, dependencies, and variability of arti-
facts. In addition to the creation context, we can collect a timestamp
of artifact creation that enables us to examine the order of their
creation and dependencies. For example, feature generation arti-
facts serve as inputs to model fitting. We can also examine how
artifacts change over time. For example, say the initial set of fea-
tures was generated automatically by an AutoML algorithm, and
a human examining the artifact decides to update these features
with their own manual selection. Now, two versions of the artifact
exist. Through the artifact’s properties, it is possible to identify that
the first version of the artifact was created automatically, but the
subsequent version resulted from human intervention.

6.1.3 Describing and comparing human-ML/AI collaborative anal-
yses. Collaboration between human and ML/AI systems makes it
hard to audit and compare analyses. We propose that by annotating
analysis through our artifact taxonomy, we directly describe and
compare the different analytic choices and deduce some level of
automation, from full automation to none and varying degrees in
between [44, 50, 72].
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6.2 Data and Tasks
We use both the individual artifacts and their collective metadata as
an input dataset for AutoML Trace to visualize. Individual artifacts
come in different formats that influence how they are captured and
how they are visualized to the end users; we define these different
formats in our taxonomy as part of the properties of an artifact
(Figure 5.2). The taxonomy along with additional information, such
as timestamps and pipeline structure, define the metadata for a col-
lection of artifacts. To facilitate an engaging, collaborative dialogue
around these artifacts, we define a set of tasks that our interactive
visual sketch should support:

• T1 Present a Contextual Overview of Artifacts: The
contextual overview ties the artifact creation with its specific
data science phase (see Section 3). Whether an artifact was
generated automatically or by a human was important – this
consideration would become a key component of the AutoML
Tracedesign. The dependencies of artifacts on each other
were also an important contextual component.

• T2 Locate an Artifact: Enable end-users to filter out arti-
facts they are not interested in and to focus on a specific
artifact, or group of artifacts, that are of interest to them.

• T3 Summarize theDetails of theArtifact:Artifact details,
like its properties and dependencies, should be progressively
revealed to the end-user. Similarly, an artifact’s taxonomic
descriptors should reveal artifacts that share the same prop-
erties, not just those that a selected artifact depends on.

• T4 Compare an Artifact over its History: The end-user
should be able to compare the states of an artifact over time
and relative to its upstream and downstream dependencies.

These tasks align with those for information seeking that were
defined by Shneiderman [86] (Overview, Zoom, Filter, Details on
Demand, Relate, Histories, and Extracts), but described using a
terminology of more recent task typology defined by Brehmer and
Munzner [9].

6.3 AutoML Trace Interface
AutoML Trace takes a collection of artifacts and their metadata as
input for visualization. It has three complementary views : Origin
(Figure 6), Dependency (6), and History views (7). The encoding
choices for the artifacts were the same for all views to maintain a
consistent visual language. The artifacts are represented as circles,
color-coded by their origin (human or machine), and aligned by
the Data Science phase (preparation, analysis, deployment, and
communication). These views are inspired by the graph and net-
work visual approaches from prior AutoML systems and studies
(see Section 2), although we did consider alternative designs (see
Supplemental Materials - [SM4]). As this is an interactive sketch,
we do not exhaustively compare it against other design alternatives.
Origin View: What artifacts are human versus machine-
generated? The artifact origin view shows the artifacts collected
from the AutoML system analysis in the context of whether they
were generated by a human or automatically 6. We use an allu-
vial diagram to show the flow and trade-off between the origins

of the artifact (T1 (Present)). We emphasize human and machine-
generated artifacts as a focal point of this view as a way to showcase
the interleaving collaborative processes.

Hovering triggers additional taxonomic details to be revealed on
demand via an information card (T3). End-users can further hover
on the taxonomic descriptors and contextual data such as depen-
dencies and data science stage (T2). Once an artifact is selected,
end-users can also view the raw source file outputs for the artifact.
Dependency View:What artifacts are dependent on one an-
other? The dependency view show the relationships between arti-
facts(Fig. 6). The design of this view is inspired by the illustration
of Data Cascades [81]; indeed, this view is a direct response to sur-
facing those cascades through artifacts. Similar to the origin view,
the end-user is presented with an overview (T1), and information
is revealed via hover actions (T3). However, in this view, selecting
an artifact highlights its dependencies (T2).
Version History View: How did changes in one artifact influ-
ence changes in other artifacts? This view is used to drill down
into artifact histories and understand how changes in one artifact
could influence changes in dependent artifacts (Figure 7). Users
can view the artifact history by selecting a given artifact in either
the Origin or Dependency view. This view enables end-users to T4
(Compare) and the artifact itself over time as others. In Figure 7,
there are four horizontal lines, which correspond to four revisions,
or iterations, of the analysis. New artifacts or those modified by
the update are represented as circles. Those that did not change are
shown as a downward triangle. The dependencies for a selected ar-
tifact are also drawn. Like the previous two views, hovering reveals
additional taxonomic descriptors of the artifact.

7 USAGE SCENARIO
We present a usage scenario with a team of enterprise software
developers where we use our taxonomy and AutoML Trace to ex-
plore and analyze their existing AutoML system. Our collaborators’
goal was to analyze their existing AutoML systems to understand
when, what, and how end-users of their system intervened or over-
wrote the decisions of the AutoML system. At present, they had no
mechanism for this interrogation. We describe how AutoML Trace
supported dialogue during discussions with the team to reflect on
the systems’ present capabilities and ideate around outstanding
end-user needs. These discussions lasted one hour and occurred at
a cadence of every two weeks for approximately a 3 month period.
The entire team joined the meetings and discussions. In these con-
versations, we presented collaborators with our analysis of their
AutoML system as artifacts that we collected and annotated using
our taxonomy. We refined our collection of artifacts and the visual
design of AutoML Trace in response to collaborator feedback and
discussion.

7.1 Collaboration Context
Overview of the existing system. Their AutoML systems could
automate aspects of data work from preparation to deployment
(Section 3), including surfacing automatically flagged insights for
exploring data, feature generation, and automated model selection.
A graphical user interface (GUI) guided end-users through the
analysis and revisions of the results. The end-user could intervene

https://osf.io/exs3q?view_only=19962103d58b45d289b5c83421f48b36
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are highlighted in the visualization, making it easier to track what is affected when a given artifact changes. In the example,
the initial model specification is selected, showing the other artifact dependencies along with the artifact’s characteristics
from the taxonomy. (B) Artifact Origin View shows what artifacts are human-generated versus machine-generated. In addition,
this view allows the user to find commonalities in artifact properties defined by the taxonomy. Once again, the initial model
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Figure 7: Artifact History View. This view shows the history of the selected artifact, differentiated by analysis versions. From
the dependency view, the histories of the selected artifact dependencies are also shown. This example shows the history of the
selected artifact “Initial Model Specification”. The tool-tip shows details for the third version of the “Alerts” artifact, which is a
dependency of “Initial Model Specification”.

to modify the analysis, for example, change the model type, via
input widgets and interactions through the GUI. Certain aspects
of the system also required explicit human input before initiating
an automated process. For example, the systems would surface
multicollinearity (in a non-technical manner) and required that the
end-user confirm which features to remove from the analysis. The
end-users could deploy a model to be used by others; automated
processes would also monitor for concept drift and, if necessary,
alert the end-user to trigger updates.
Team composition and collaboration goals. Our collaboration
had two primary goals. First, for the team to reflect on their existing
system and better understand what AutoML systems are capable of.

Our taxonomy created an avenue for this reflection by providing
a structured vocabulary to describe their system and compare it
to others. The second goal was to examine what the additional
traceability would add to their system. The project team consisted
of software engineers, designers, user researchers, and a project
manager. We also recruited one customer of their system for addi-
tional feedback. The team worked together to implement different
components of AutoML work and implement the system.
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7.2 Artifact Identification, Classification, and
Extraction

We briefly describe how we analyzed our collaborator’s existing
system to develop a collection of artifacts visualized with AutoML
Trace.
Generating Artifacts. Within the GUI environment of the Au-
toML system, we created an end-to-end data analysis. We began
with preparation and concluded with communication. During this
process, we returned to earlier steps and made modifications. For
example, we did not initially apply automatic data-cleaning rec-
ommendations but did so in a subsequent iteration. We also let
the system pick features for the model in the first iteration and
subsequently changed them. Carrying out this analysis had three
goals. First, to produce a variety of possible artifacts. Second, to
document dependencies between artifacts, and finally, to observe
how artifacts change in response to user interactions. The result
was a set of artifacts derived from the same analysis that changed
over time.
Collecting Artifacts. We used APIs developed by the team to
collect a set of JSON files for our analysis. We used the API outputs
over other approaches (i.e., usage logs) because these outputted
the entire artifact, making it easier for us to classify the artifact
according to our taxonomy. We additionally stored the order in
which objects were created and could establish the dependencies
of artifacts (Section 6.1.2). Like many existing AutoML systems,
they did not explicate any human involvement. We had to manu-
ally record when an artifact was generated or modified by human
intervention needed. In the infrequent instances where we could
not capture all aspects of the analysis but we deemed an artifact
was important, we took a screenshot of the artifact. For example,
some of the automatically generated insights for data exploration
had visualizations that could not be extracted from the APIs, so we
took screenshots instead.
Classifying ArtifactsWe annotated the files from the API calls
or screenshots using our artifact taxonomy. However, in most in-
stances, a single file contained multiple artifacts. For example, an
API call for information on the initial dataset returned this infor-
mation along with information on recommended wrangling trans-
formations. The authors first identified artifacts from these APIs
by manually inspecting them in a simple development environ-
ment - demarcating and marking up instances of artifacts. Next, the
authors examined each of the artifacts individually and classified
them according to our taxonomy, modifying their properties as was
pertinent to analysis (i.e., whether it was human or automatically
generated). Finally, we examined and recorded the dependencies
among artifacts. The authors repeated these two steps until they
reached a consensus on the artifact type and its properties; we also
engaged with our collaborators to verify that our artifacts were
accurate. A final list of artifacts and their taxonomic annotations is
available in the Supplemental Materials ([SM3]); this list served as
a backbone of our AutoML Trace implementation.

7.3 Collaboration and Question Elicitation
As a final step, we presented AutoML Trace to our collaborators via
chauffeured demonstrations [57] conducted over video conferenc-
ing platforms. We demonstrated the functionality and affordances
of AutoML Trace and our collaborators were given opportunities
to provide feedback. We iterated between discussing the analysis
we conducted using their existing platform and the artifacts we
harvested and visualized via AutoML Trace. This was an important
step in our assessment, as it reinforced to our collaborators that
traceability could be added to their existing system, as all artifacts
of a real analysis were captured through their APIs. The team was
excited to view their artifacts and their system’s capabilities in this
way.

We wanted to collect the types of questions our prototype would
elicit during these feedback sessions. The engagement was dynamic,
with both the authors posing and responding to questions about
the artifacts, their sources, dependencies, and changes over time.
What our collaborators appreciated most was being able to see their
system laid out according to our taxonomy. This new view of their
system led them to examine aspects of their work from a perspective
they had not previously considered. We summarize our discussion
into three common themes: seeing and describing dependencies,
comparing sequences analyses over time, and comparing how their
system differed from others.

Seeing and describing dependencies. Visualizing the dependen-
cies of individual artifacts and the different types of artifacts was
something they had not been previously able to do. They were es-
pecially interested and excited to see how the human and machine-
generated processes interleaved through the analysis. This com-
bination of the origin and dependency view allows them to infer
potential causal relationships between an artifact’s current state and
other actions. As we have previously indicated, many AutoML sys-
tems do not explicate the role of humans, but, with AutoML Trace
the impact and effect of the human’s role are undeniable. The team
saw the benefit of visualizing the analysis in this way as a way to
reflect on the system’s design. They also saw the benefit of surfac-
ing such relationships to support governing an analytic pipeline.
For example, if authorization is required to deploy a model, they
saw AutoML Trace as a useful way to audit the existing analysis
to either recommend or decline deployment.

Comparing sequences of analyses analyses. Our collaborators
were also interested in using AutoML Trace to compare analyses
conducted by multiple analysts over time. They specifically wanted
to have multiple analysis sequences generated by different actors
and to compare them. This scenario of asynchronous human col-
laboration, together with individual human-machine collaboration,
is a promising sign of our taxonomy’s utility for more complex
problems. While we can version artifacts, enabling detailed com-
parisons, our current design is not well optimized for multi-human
collaboration - although, this again, points to fruitful directions for
future work.

One collaborator was particularly interested in understanding
when humans took machine suggestions and applied them and
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when they ignored suggestions. A specific artifact sequence of in-
terest began with the initial dataset, followed by wrangling transfor-
mation recommendations with a machine source. Then the record-
ing of user actions would indicate whether the end-user applied any
wrangling transformation recommendations. Finally, it concluded
with any potential updates to the initial dataset. This is yet another
interesting usage scenario that not only enables us to understand a
system’s level of automation but, potentially defines signatures of
automation per user. Moreover, it is also possible to assess whether
some artifacts are modified more often than others. Collectively,
these signatures could be leveraged to identify problematic features
(for example, if the machine’s results are constantly overwritten)
or patterns of analysis behavior.

Comparing their system to others. The taxonomy we developed
is an amalgamation of various systems that span both human and
machine processes. Our taxonomy provided a standard vocabulary
for comparing these systems and reflecting on what artifacts might
be missing relative to another system. For example, more recent
advances in AutoML technology includes a computational budget to
enable these automated processes to complete within a reasonable
time frame and budgetary constraints. However, not all AutoML
systems have such features. Our taxonomy prompted a discussion
of the design implications for our collaborator’s system. They were
first comforted to see that their existing system had elements that
overlapped with others, but, could also see other interesting aspects
that were absent in their current implementation.

7.4 Summary
In this second phase of research, we probed the utility and ecologi-
cal validity of taxonomy by collaborating with a team developing a
complex AutoML system. The AutoML Trace sketch demonstrates
that a taxonomy is a useful boundary object to engage with a team
of software and ML/AI experts designing human-ML/AI collabo-
rative systems. It also demonstrates that traceability has valuable
applications to both human-machine and human-human collab-
orations. While our approach does not address all of the design
challenges for evolving and adaptive systems [112], it does take
preliminary steps toward doing so.

8 DISCUSSION
Human collaboration with ML/AI systems will grow more ubiqui-
tous as AutoML technology becomes increasingly integrated within
data work. These systems lower the barrier for data work and help
data scientists triage their work more effectively [101]. However,
as existing systems still require human oversight and interven-
tion, these semi-automated systems need to be observable and
understandable. Recent work from the HCI community identifies
challenges in scrutinizing ML/AI systems stemming from the com-
plexities of human-ML/AI collaborative work and emphasizes the
need for a common language for discourse in this space [112].

Our work addresses limitations in human-ML/AI collaboration
in several ways. First, we formalized a common language that ac-
counts for human and machine aspects of these systems by cre-
ating an AutoML artifact taxonomy. Second, we operationalized
this taxonomy in our interactive sketch AutoML Trace, charac-
terizing these artifacts to facilitate a traceable workflow. Third,

we characterized traceability for scrutinizing this highly complex
and heterogeneous process. While prior research captures aspects
of traceability through provenance tools (i.e., [56, 70, 103]), they
fail to differentiate between human and automated processes and
frequently ignore human processes altogether. Research in human-
human collaboration and knowledge sharing has highlighted the
importance of artifacts for capturing [47, 49] and tracing [27, 59, 95]
complex collaborative processes. By considering traceability, we
offer a different perspective on artifacts. We argue that traceability
encourages a broader consideration of an artifact’s lineage and the
contextual factors of its generation and use. Moreover, through ar-
tifacts, our research acknowledges and elevates the sociotechnical
relationships between humans and ML/AI systems.

Beyond provenance, contemporary research is increasingly fo-
cused on the importance of transparency, interpretability, and ex-
plainability toward ML/AI systems [3, 5, 46, 62, 90]. However, this
prior work focuses on the model itself and misses influential factors
throughout the data cascade [81]. Our research expands the scope,
capturing artifacts across an end-to-end pipeline of data science
work through artifacts and taxonomies. We demonstrate that tax-
onomies can be robustly created and can serve as boundary objects
for designing human-ML/AI collaborative systems. Our approach
shows it is possible to have “both transparency of process and trans-
parency of product; the former refers to the transparency of the human
processes of research and innovation, the latter to the transparency of
[...] AI systems so developed.” [105].

Lastly, our research acknowledges and describes the difficulties
of developing visual and interactive systems for human-ML/AI col-
laboration in data work. Design studies and other application-type
research focus primarily on end-users, but complex systems still re-
quire the engagement of ML/AI experts. The collaboration between
researchers and experts who are not the end-users remains complex
and can require visualization tools as intermediaries to facilitate a
dialogue [112]. Absent reliable scaffolds for this dialogue, we
took on the ambitious task of creating them. Developing an Au-
toML artifact taxonomy and AutoML Trace created boundary
objects that we used to address these challenges. Our intent in
describing our process is to provide possible avenues for other
researchers facing similar challenges.

8.1 Implications of Our Findings and Future
Work

8.1.1 On Design and Evaluation of Human-Centered AutoML Sys-
tems. Our artifact taxonomy can be used to reflect upon existing
systems and ideate new ones. One of the limitations of existing
guidelines for human-ML/AI interaction is that they target the ini-
tial ideation of the system and are less effective should a system
already exist. In our case study, we observed an artifact taxonomy’s
potential to reflect design retrospectively and prospectively. This
potential is essential to identify and modify ineffective approaches.
Our taxonomy serves to help researchers and practitioners ideate
on new systems and speculate what anML/AI system could do [112]
while promoting reflection on the role of humans.

8.1.2 On Data Science Collaboration. Different kinds of data work-
ers are engaged across data work [14, 100, 102]. Further work is
needed to understand how different data science personas [15],
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from ML engineers to technical analysts, would use this taxonomy.
Prior research shows that people trade-off aspects of data work
amongst themselves [15, 114]. Capturing and tracing artifacts can
help a team of data workers understand what work was done and by
whom (or what). Moreover, discussion around artifacts, visualized
by tools like AutoML Trace can help teams of data workers make
sense of and critique the analysis and its results [65]. Finally, while
there exists some research exploring the relationship between data
workers and levels of automation (i.e., Wang et al. [101]), the com-
plex relationships of human-to-human with human-to-machine
collaboration have not been explored. Our taxonomy may prove
helpful for extending these prior studies to a more hybrid flow of
data work.

8.1.3 On Data Visualization and Visual Analytics Tools. Visual anal-
ysis tools leverage the advancement inmachine learning to innovate
on affordances visual analytic (VA) systems. Expanding our under-
standing of VA systems by capturing a more detailed catalog of
artifacts would allow “users of the system to stay more engaged in
the act of visual data exploration, as opposed to actively training the
model and system,” [24]. Inspired by Yang et. al. [112], we were
motivated to expand the view of what can be captured and surfaced
from ML/AI pipelines beyond the model or analysis phase. With
the emphasis on a broader inclusion of the human element into
what we capture and surface, our taxonomy is a step toward a more
general view of human-generated artifacts captured across a work-
flow independent of a single system or pipeline. We hope others
continue to utilize and expand on this in the space of VA systems.
Visualization and Human-Computer Interaction researchers can
build upon our research in two ways. The first is expanding the
scope of what can be visualized by VA systems for ML/AI. Our tax-
onomy proposes a richer view of an AutoML pipeline that current
work (Section 2.2) does not yet consider. Researchers can use our
taxonomy to analyze and visualize other ML/AI systems, including
but not limited AutoML systems, and even extend our taxonomy
and contribute to expanding our catalog of ML/A artifacts. While
our AutoML Trace interactive sketch proposes one possible visual
approach, we believe there are rich opportunities to explore the
space of visual designs. The second is by expanding paradigms for
human-ML/AI interaction. Data visualization tools are a medium
for human and machine learning systems to work together [88, 90].
While interactions with these systems can be used to intervene with
ML models [10, 23, 29], future work could extend this potential to
other types of primitives and aspects of AutoML pipelines [38, 70].

8.2 Limitations
Data work involves a wide variety of different kinds of data workers.
Further work is needed to understand how different data science
personas [15], from ML engineers to technical analysts, would use
this taxonomy. To re-purpose the adage about statistical models,
“All taxonomies are wrong, some are useful.” Like the taxonomies
that came before ours, we strove to make our taxonomy useful
to HCI, visualization, and machine learning researchers and prac-
titioners. In service to this goal, we followed a rigorous process
for taxonomy development proposed by Nickerson et al. [67] with
extensions from Prat et al. [73]. We were diligent in documenting

our taxonomy development and made artifacts of our research pro-
cess available as supplementary materials so others might critique
or extend our work. While this approach is more involved, it also
serves as an important alternative to ad hoc approaches for taxon-
omy development that are difficult to interrogate and replicated.
More generally, we argue that the research process brings greater
attention to the importance of artifacts resulting from automation
and human labor in data science work. Another limitation of our
work is that our usage scenario excludes the ultimate end-user,
the people conducting the analysis. The rationale for doing so was
twofold. First, we needed some baseline to ground the development
of a system like AutoML Trace. Absent this baseline, we needed
to create one, hence, the primary contribution of our taxonomy.
The second rationale was that, for our present contributions, the
developer team was the more appropriate group to conduct a pre-
liminary assessment. In Section 7, we identify several fruitful ways
to expand on our work and move toward end-user evaluations,
including a broader investigation of the visual design space and an
investigation of asynchronous, multi-human collaborations.

Finally, we reflect on our taxonomy development approach. Al-
though our taxonomy was developed through a broad literature
review, we assess its utility primarily through collaboration with a
single team. It is not uncommon for visualization research to focus
on a core collaborator group, but, further work is required to assess
its generality. We are optimistic that there is great potential for
using the taxonomy to compare disparate systems and pipelines
from AutoML to visual analysis. We encourage the community to
engage with the taxonomy operationalized in mediums they see fit
for their data work. In addition, we look forward to seeing how this
taxonomy can expand over time as ML/AI technology advances.

9 CONCLUSION
The growing ubiquity of AutoML technology enables a wider group
of stakeholders to conduct data work but can also make it challeng-
ing to trace what was done and by whom (or what). Attempts to
address these challenges are often stymied by the complexity of the
systems themselves and a lack of available scaffolding for engaging
with the ML and software developers that create these systems. We
present a two-phased approach that explicates the collaborative
relationships between humans and AutoML systems to carry out
data work. The first phase develops an artifact taxonomy that can
be used to identify, classify, and describe artifacts from both socio-
and technical sources. The second phase is a usage scenario with
an enterprise development team that demonstrates the utility of
our taxonomy as a boundary object. This usage scenario also rei-
fies the value of tracing artifacts in the process of designing and
developing collaborative human-ML/AI systems. Our findings and
contributions have implications for the design and evaluation of
AutoML systems used to facilitate automation in data work.
Availability of Supplementary Materials. Notes taken during
the development of our taxonomy and the AutoML Trace prototype
are available online2.

2https://osf.io/3nmyj/?view_only=19962103d58b45d289b5c83421f48b36
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• [SM1] AutoML Artifact Taxonomy Development : A
spreadsheet of each artifact and their classification across
each iteration of the taxonomy

• [SM1-F] AutoML Artifact Taxonomy Final : A spread-
sheet of the final taxonomy, with artifacts, properties, and
their classification. A summary is also shown in

• [SM2] Taxonomy Iterations Details : A summary of our
decision process for adjusting the taxonomic dimensions,
categories, and objects. It has a detailed annotation of each
iteration, what changed, and how we assess our end condi-
tions for taxonomy development.

• [SM3] Design Specification : Design specifications for Au-
toML Trace prototype that provide additional context for the
content in Section 6.

• [SM4] Design Alternatives : Design alternatives that were
considered and discussed with our collaborators.
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A APPENDIX: AUTOML ARTIFACT
TAXONOMY ADDITIONAL DETAILS

We describe the artifact properties according to our taxonomy. We
use color highlighting through this subsection to emphasize the
dimensions , categories , and characteristics of our taxonomy
(see Section 4). The exposition of our taxonomy proceeds in
a hierarchical order, beginning with a dimension down to its
respective characteristics.

1.2.1 Initial

1.5.1 Integrated 1.5.2 Extrinsic

Dimension Category Characteristic

1 Source

2 Transmission Mode

3 Artifact Format

4 Task

1.1.2 Intent1.1.1 Persona

1.3.1 Structural 1.3.2 Metrics1.3.3 Results
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Artifact PropertiesArtifact
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2.1.1 h→m 2.1.2 m→h

1.2.1 h→h 1.2.2 m→m

Figure 8: The Source dimension of an artifact and the cate-
gories and characteristics it encompasses

Dimension 1: Source (“What generated the artifact?” ) Iden-
tifying the artifact’s source helps provide context and a sense of
provenance of how the decisions were made throughout an AutoML
process. In fully automated data science processes, these artifacts
are generated by computational processes, which we refer to as
‘the machine’, without human intervention. However, as full au-
tomation is both challenging to achieve and not always desirable,
in reality, artifacts can have a variety of sources. For example, a
visual analytics mixed-initiative system that operates on top of an
AutoML pipeline. In such a system, an analyst can arrive at a set of
insights through a combination of automated decisions made by a
back-end model and human inputs provided through the interface
made along the way [37, 88, 89]. At a high level, artifacts can have
human or machine sources. However, in our taxonomy develop-
ment process, we were also able to define an additional layer of
granularity to artifact sources. Human artifacts can be sourced from
individual or organizational processes. Machine artifacts can be
sourced from the AutoML processes and the overall software infras-
tructure (or system) that orchestrates the automated data science
processes. Finally, we separate data as its own unique source as it
cross-cuts both human and machine sources. These more granular
source delineations are categories in our taxonomy that have addi-
tional characteristics. While we found that many artifacts generally
have distinct sources, some can have multiple sources. For example,
many artifacts concerning data augmentation can be sourced from
a combination of human intents and derivations from the initial
dataset. Sources of human input can also result from prompts by
the system that explicitly seek user feedback.

• Category 1.1: Human We found that humans act as
sources to AutoML pipelines primarily by providing inputs
in the form of goals and requirements, specifications [30, 39],
and interactions with a system [12, 39, 78]. While humans
can refer to one or multiple individuals providing input, we
prefer the more narrow interpretation of a single human
providing input to or interacting with an AutoML pipeline.
As will become clear, ‘organizational processes’ is a better
source designation to describe multiple humans working

together. Amongst individual human sources, we found two
characteristics that added important context: persona and
intent.
We found that artifact types can differ based upon
the persona (c1.1.1) [14, 44, 103] of the individual carrying
out the analysis. AutoML systems can be leveraged by in-
dividuals not trained in data science or machine learning.
We posit the nature of those inputs and the affordances they
use to supply those inputs will be different than those with
more area expertise. For example, individuals trained in data
science of machine learning might produce more codebase
artifacts through their use of notebooks [98], while other
personas may rely more on no-code solutions, and their in-
puts are more likely captured through interface widgets or
other types of semantic interactions [23, 29].
Another important characteristic of human source artifacts
is the intent (c1.1.2) of the individual. These artifacts can
appear as user preference models, analysis types, or even
model tasks (the analyst chooses a model optimized for a
specific task). The HCI, Vis, and ML communities have used
different terminologies to define what a person wishes to do
in an analysis process. Tasks is a common term used in all
three communities (i.e. [9, 44, 106] ) and these can be tied to
goals [48] or preferences. Recently, visualization researchers
have begun using intent as a general way to capture this
spectrum, from an individual’s tasks to their goals [28, 85].
We opted to use this terminology because it aligned well
with the diversity of artifacts our analysis captured.

• Category 1.2: Data Data are perhaps the most obvious
artifact of an AutoML process and one that needs the least
explanation. In our taxonomy, the primary characteristics of
data differentiate whether it is an initial input or whether it
is derived from the AutoML process.
Initial (c1.2.1) datasets are sometimes also referred to as
raw data. We refrain from using the word ‘raw’ largely be-
cause no dataset truly exists in such a state [17, 31]. Instead,
we use the term ‘initial’ dataset, in lieu of the ‘raw’ terminol-
ogy. Furthermore, the terminology of 1initial’ acknowledges
that a dataset may be further transformed or augmented
either by a human or an AutoML process before a machine
learning model is applied.
In contrast, derived (c1.2.2) datasets result when transfor-
mations are applied to the initial data. These transformations
can result from data cleaning or wrangling operations [45]
(including feature encoding [44, 111, 113], the derivation
of new features [101, 118], or creating a new representa-
tions via data or feature embedding [111]). The resulting
derived datasets are generated by the AutoML processes and
changes in their compositions can be useful to understand
how processes arrived at its final set of results [13].

• Category 1.3: AutoML Process Different levels of au-
tomation directly influence how many and what kinds of
artifacts are generated by an AutoML process. Given that Au-
toML can theoretically range from hyperparameter tuning
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to a full end-to-end data science pipeline [38, 44, 119], the
spectrum of possible artifacts stem from AutoML processes
can be very broad. However, we identified three characteris-
tics of artifacts that span this spectrum: structure, metrics,
and results.
Structural (c1.3.1) characteristics of artifacts describe a com-
ponent of an AutoML pipeline, such as a machine learning
model, or an end-to-end pipeline of steps that also encom-
passes data preparation, feature engineering, and report-
ing [26, 38, 44, 99, 111, 119]. We additionally extended the
definition of structural characteristics to include algorithmic
artifacts that constitute training or tuning a specific com-
ponent [34], the architecture or more complex models like
neural networks [42], or pipeline topology [111], configu-
ration space [26, 119], or search space [68, 70, 103]. Lastly,
we include a model’s tasks as part of its structural charac-
teristics, as they play an important role in understanding
what the model is intended to do while adding context to
architecture. Structural characteristics often take the form
of specifications supplied by the end users or are automati-
cally generated by the AutoML processes. For example, we
consider the final architecture or fit of a model to be an au-
tomatically generated artifact with structural characteristics
resulting from an algorithmic process.
Metrics (c1.3.2) and results (c1.3.3) are two complemen-
tary characteristics and perhaps the most widely scrutinized
aspects of AutoML process artifacts. Metrics refers to mea-
sures that describe the model training, validation, and testing
performance. These can take various forms depending on
the type of model used and the task it is intended to solve.
However, basic measures such as overall or average accu-
racy tend to be the most commonly reported. Metrics are
intimately tied to the result of a component or pipeline ap-
plied to a data set. Again, the precise nature of this result
depends upon the model task. Two commonly used types are
classification and clustering tasks; however, more advanced
models enable a more complex set of tasks such as document
summarizing, and text or image generation, among others.

• Category 1.4: System AutoML processes sit within a
larger software ecosystem that orchestrates and carries out
the computational instructions of its different components
(i.e., data cleaning, feature engineering, or machine learn-
ing steps). Artifacts tend to be generated by a system, and
we identified three characteristics of such artifacts: inputs,
prompts, and processes.
Characteristics of these artifacts concerned the ways that
they were either provided or generated by the system. Some
artifacts operate as inputs (c1.4.1) , which can come from hu-
man processes or result from data or other types of artifacts
transferred between an AutoML process and the computa-
tional layer of a system. These can include configuration
files for the computational environment [11], computational
budgets [103], or source code [11, 101]. Artifacts are also gen-
erated as a result of the system presenting a prompt (c1.4.2)
to an individual for some input, or through an automatic

process (c1.4.3) . Alerting mechanisms can be a common
way to prompt an individual for some action; this action
produces an artifact that can trigger a change to the AutoML
pipeline. For example, alerting an individual to a high cor-
relation between two variables in their input dataset can
lead them to remove a feature from a model. The alert is
generated by an automated process that carries out the cor-
relation checking and is itself an artifact, but the choice the
user makes (whether to remove the feature from the model
or not) results from the prompt itself; the artifact is a user’s
choice and has the characteristic of being generated by a
prompt.

• Category 1.5: Organizational Process AutoML technol-
ogy is used in conjunction with existing business and orga-
nization practices [14]. These processes generate artifacts
that can act as input and integrate directly into AutoML pro-
cesses while others exert an extrinsic influence but do not
provide any direct input.
Organizational artifacts that have an integrated (c1.5.1)
characteristic when they directly influence how AutoML
pipelines are trained, evaluated, and finally used in decision-
making. For example, the data schemas that define the struc-
ture of the data are influenced by business practices. How-
ever, schemas influence the type of data that is collected, and
how it is stored and accessed, which can be used or limit
what is achievable in an AutoML process [19]. Other arti-
facts that constitute integrated organizations process include
data augmentations, through contextual augments (i.e. hu-
man supplied semantic annotations [25] or ontologies [12])
and benchmark datasets [42, 69, 116, 119]. We found that
these artifacts closely reflected how organizations carry out
their practices, unlike a machine learning model whose un-
derlying mathematical specifications are largely agnostic to
organizational practices.
Although not the focus of our research (Section ??), we also
made space for extrinsic (c1.5.2) organizational processes,
which include legal procedures or practices within the or-
ganization that dictate the use and limitations of AutoML
technology. These artifacts are not directly integrated into
the processes of specifying, developing, or training aspects of
an AutoML pipeline, as, for example, data augmentations are.
They are a step removed from the AutoML processes, even
though they add relevant contextual information; hence, we
classified these artifacts as extrinsic.

1.2.1 Initial
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Figure 9: The Transmission dimension of an artifact and the
categories and characteristics it encompasses

D2: Transmission Mode (“Does it cross the boundaries be-
tween human and AutoML processes?” ) Our work emphasizes
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artifacts that cross boundaries between machine and human pro-
cesses. However, there still exist artifacts that do not cross this
boundary but that are important for transparently describing Au-
toML processes. We include space for both in our taxonomy.

• Category 2.1: Boundary Crossing artifacts are passed
between the human and AutoML processes, and vice-versa,
which we interpret as characteristics of an artifact. An
artifact that goes from a human to AutoML processes,
h→m (c2.1.1); human-to-machine , serves as input to the
AutoML. This input includes artifact sources stemming from
the data they provide, specifications and configurations, or
even the imposition of integrated or extrinsic processes, such
as requirements documentation [2, 11, 101] which can dic-
tate what the AutoML process should do. We also consider
actions that govern an AutoML process and determine how
it proceeds, for example, whether a specific model can be de-
ployed, to also possess h→m characteristics, although none
of the research papers we reviewed in building our taxon-
omy contained such an explicit artifact. AutoML processes
can automatically generate outputs in the form of reports
or alerts intended for human consumption. These artifacts
have an m→h (c2.1.2; machine-to-human) characteristics.
Increasing AutoML processes produce, or are expected to
produce, explanations for their outputs in the form of re-
ports [101] or automatically generated model cards [61].
Automatic methods for detecting anomalies in the data or
model [22], especially the presence of concept drift [13], are
initiated by the AutoML system. These automated methods
generate artifacts to present to a user in the form of alerts,
automatically generated reports, or dashboards.

• Category 2.2: Non-Boundary Crossing We limited the
number of non-boundary crossing items we included in
our taxonomy; a full survey of such artifacts could likely
fill one or several research papers on their own. More-
over, other research literature has examined these such
artifacts ranging from knowledge management [47] to
APIs and other considerations of computational infrastruc-
ture. To be able to connect our taxonomy to such arti-
facts we have included h→h (c2.2.1; human-to-human) and
m→m (c2.2.1; machine-to-machine) characteristics for non-
boundary crossing artifacts.
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Figure 10: The Artifact Format dimension of an artifact and
the categories and characteristics it encompasses

D3: Artifact Format (“What shape does the artifact take?” )
As a practical consideration in our taxonomy is the different forms
that artifacts take. Our observation is that different systems produce
artifacts in different formats, although current systems place an

emphasis on primarily numerical artifacts. Systems that visualize
AutoML process, such as PipelineProfiler [70], ATMSeer [103], or
AutoVizAI [104], are informed by the format these artifacts take
when considering what to visualize and how. As we take a more
expansive look at AutoML processes and the hand-off between
human and machine processes, and as AutoML systems expand to
greater levels of automation, we argue that the diversity of artifact
formats grows. It is important to acknowledge this artifact format
diversity in creating future AutoML systems or tools that aim to
surface these artifacts of a diversity of data science and non-data
science personas. Moreover, these artifacts can constitute both
inputs to, or outputs of, and AutoML processes. In our analysis, we
identified four categories of these artifact formats: single values,
multiple values, specifications, and reports.

• Category 3.1: Single Value It is common for AutoML ar-
tifacts to be a single value, for example, a single summary
statistic or a text alert informing an individual of some result.
We found that either numeric (c3.1.1) or textual (c3.1.2)
characteristics were common for such artifacts. Annotations
on the data [25, 87] or AutoML pipeline [90] and feedback
from individuals also tend to come in the form of comments
and thus are also artifacts with textual characteristics.

• Category 3.2: Multiple Value A natural extension of sin-
gle value artifacts are those that contain multiple values. We
delineate table (c3.2.1) and tensor (c3.2.2) characteristics
for the shape of these data. In the machine learning liter-
ature, tensor strongly implies an N-dimensional numeric
array, which can range form a single scalar value (N=0) to a
vector (N=1), and a finally a multi-dimensional array (N>1).
Because the term tensor has such a strong numeric conno-
tation, we include ‘table’ terminology to allow for artifacts
mixed types of data (numeric, ordinal, categorical); a table
with one column is just a list. We did consider whether single
values should simply be considered special cases of tables
and tensors, but, because we also wanted to emphasize data
with similar or mixed variable (column, attribute) types we
opted to separate single and multiple values in order to make
this characterization easier to identify.
We also considered a graph (c3.2.3) to constitute multiple
data types. The word ‘graph’ is overloaded and can mean
either a visualization or a type of data structure. Here, we
use the term to mean a graph data structure that constitutes
nodes and edges. Moreover, we use graph as a general term
to encompass both network and tree structures, again with
these being special cases on graphs; a tree is a graphwith a hi-
erarchical, directed, and acyclic structure. Behavioral graphs,
interaction logs, or interaction sequences [6, 12, 39, 91] are
common examples of artifacts with graph characteristics that
we found. Initial datasets are also artifacts that can have a
graph characteristics, for example, ontologies or knowledge
graphs [1, 97].

• Category 3.3: Specification
As AutoML processes grow in complexity from focusing
on model training and expanding to multiple stages of data
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Figure 11: The Task dimension of an artifact and the cate-
gories and characteristics it encompasses

science processes. As a result, an AutoML process can be
described as a set of interchangeable components [99, 111]
(also referred to as an ‘ML primitive’ [38, 70]) that are pieced
together into a final workflow configuration. We use an ex-
panded definition of an AutoML component here to include
not such the machine learning model and its dependencies
(feature engineering, data preparation), but also to include
reporting, task formulation, and other such stages [44]. De-
pending on the level of automation, specifications can rep-
resent individual components or entire workflows. These
specifications typically take the form of configuration files or
source code, however, others have explored a broader space
of specifications that includes equations and logic rules [97]3.
Depending upon the level of automation, an individual
component (c3.3.1) can either be specified entirely by a hu-
man or the specification can be automatically generated by a
learning process. The type of specification will vary depend-
ing on the component that is being specified. For example,
specifications for a machine learning model component will
differ from specifications for a feature generation compo-
nent which will also be different than a data visualization
component. While many of these processes were formally
the manual work of data scientists [101, 119] these processes
are becoming increasingly automated [44].
Currently, many AutoML systems and toolkits arguably fo-
cus primarily on the machine learning model component and
the optimization of its structural specifications [69, 94, 110],
or in the case of deep learning it’s architectural specifica-
tions [42, 118]. However, as more sophisticated end-to-end
AutoML systems arise, an individual need not specify many
of the components as these can be derived automatically
by searching an AutoML workflow (c3.3.2) design. In these
cases, an individual may only need to specify the preliminary
configurations of the search space [2, 26, 38, 80, 99, 103, 113,
119].

• Category 3.4: Report Currently, many reporting tasks
are done by humans and are not regularly considered part
of an AutoML process, but we see this changing in the fu-
ture. Over time, AutoML processes will be automatically
generating explainers [90], reports [40, 101], and data visu-
alizations [53]. These will exist alongside human reporting
artifacts around the largely analytic goals of an AutoML pro-
cess, decision-making provenance, and finally, dashboards
that report key performance indicators [101]. The final out-
put of these reporting artifacts depends upon how they

are specified either by individuals or by the AutoML pro-
cesses. We find that they generally have two characteris-
tics, static (c3.4.1) , for example, PDFs or presentations, or
interactive (c3.4.2) dashboards.

D4: Task (“What is its intended purpose?” ). Human analytic
tasks and machine learning model tasks have complementary, if
not overlapping, objectives [88]. The tasks that either a human
3Although the authors consider these to be knowledge representations, they would fit
our definition of a specification.
or machine wishes to accomplish effects the characteristics of the
artifacts that are hand-off between them, especially if the task
results in an artifact that crosses the boundary between human
and machine processes. In our analysis, we have applied our own
judgment to establish the types of tasks that different AutoML arti-
facts are intended to support. However, we also have previous task
taxonomies specific to AutoML and machine learning [19, 93, 97],
typologies of visual analysis [9, 48], and other classification sys-
tems [44, 77, 87, 88] reported across various disciplines in formu-
lating our taxonomy of the types of task that artifacts can support.
Again, end-to-end AutoML systems are an evolving technology
and current implementations of these systems vary with respect
to what tasks they support. As such, we remind the reader that
these tasks are an amalgamation of tasks we’ve identified in real
and theoretical AutoML systems.

• Category 4.1: Informing We believe that the most com-
mon task of artifacts is currently to inform. The intended au-
dience for this information can vary depending the whether
the artifact is boundary crossing or not. We identified
six characteristics of these artifacts, in alphabetical order.
Alerting (c4.1.1) characterizes are associated with artifacts
that arise from data quality or model quality alerts [13] in the
form when they are take also take on𝑚 → ℎ characteristics.
We speculate that future systems may even be able to auto-
matically incorporate alerts in Te form of textual feedback
from ℎ → 𝑚, for example, if a human evaluation spots an
error or omission in the AutoML processes and seeks to alert
the algorithm. Moreover, we also speculate that there exists
informal ℎ → ℎ artifacts, in the form of comments, anno-
tations, or other means that initiate corrective mechanisms
in a model following a review of the results or decisions.
Curating (c4.1.2) was a characteristic common of shared or
saved insights, which we found to be a common mode of
sharing key findings from exploratory visual analyses [107].
Increasingly, the AutoML system can produce its own set of
curated insights that are presented in a rank order for individ-
uals to consider. Artifacts with comparing (c4.1.3) charac-
teristics were in many cases focused on comparing different
states of the individual workflow components; often these
were also data visualizations. For example, an individual may
wish to conduct a sensitivity analysis on a threshold for a
classification model. Alternatively, they may also wish to
compare a component over time to see how it evolves. Com-
parison tasks have been extensively studied in visualization
research, and there are complimentary taxonomies [32, 33]
here that can add even more context to comparison artifacts
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from AutoML processes. Artifacts with describing (c4.1.4)
characteristics described the state of an AutoML component
or process. These include specifications, requirements, or
regulatory documents that indicated either what an individ-
ual component was and what the sequence or configuration
of the AutoML components [11, 101]. Moreover, we argue
that descriptive artifacts can also take the form of statistical
analysis that provide a summary of the data, results, or other
properties of the AutoML processes [12, 44]. We chose to
differentiate these descriptive artifacts from those whose
primary purpose is intended to be explanatory (c4.1.5) . Ex-
planations focusing on the modeling components are in-
creasingly important for transparency and are being auto-
matically produced by these components [62, 88, 90, 101].
These artifacts can take the form of reports, but also the
outputs of techniques like SHAP, LIME, and the like [46].
While these explanations tend to focus on black-box mod-
els, we also extend our definition to the self-explanatory
characteristics of so-called “white-box” models [5, 58]. The
final characteristics of artifacts with an informing intent
are sourcing (c.4.1.5) . Sourcing artifacts are those focusing
on the lineage and analysis history of an AutoML process.
Even with full automation, human oversight, for example by
interacting with other artifacts, can trigger a refinement or
retraining of an AutoML processes’ configuration [22, 55, 89].
Through each iteration, either human-driven or triggered
by automated process [13]. Provenance processes can also
capture an individual’s interactions with different compo-
nents, for example, data visualizations [16, 91], can influence
a machine learning component through semantic interac-
tions [10, 23, 29]. While sourcing characteristics can also be
considered descriptive, we argue that, like explanations, they
have a more specific and active role beyond simply describ-
ing the state of the systems or some component and thus
should be considered separately.

• Category 4.2: Exploring Artifacts can be generated as
individual, or even automated processes, exploring the data,
model, or pipeline configuration space. We differentiate
between exploratory artifacts that are targeted (̧4.4.1) for
some specific aim (for example, hypothesis verification) and
those that arise through purely serendipitous (̧4.4.2) dis-
covery. We consider many artifacts that arise from an ex-
ploratory visual analysis processes [6, 16, 91], which can
include bookmarked or saved insights that are curated [107],
to be exploratory artifacts with serendipitous characteristics.

• Category 4.3: Governing Governance processes were
not widely considered in the AutoML literature, although

they appear in more recent work [14, 101]. These pro-
cesses will only grow in importance over time as legal re-
quirements and organizational practices change to regulate
ML/AI and AutoML technology more generally [105, 115].
From the research that does exist, we propose two charac-
teristics of governance artifacts: authorizing and auditing.
Authorizing (c4.3.1) concerns enabling an AutoML system
or even an individual analyst to execute some component,
again, who performs the work depends on the level of au-
tomation inherent in the system.We found some evidence for
such possible artifacts in [14] and [101] in their description
of a desire for oversight, for example having a data scientist
authorize the deployment of a model created by someone
else in the organization, or having automated rules that en-
force, for example, anti-bias rules. Complementary to these
artifacts are those that enable auditing (c4.3.2) , for exam-
ple, decision optimization forensics reports [101]. Artifacts
with auditing characteristics rely on a variety of artifacts,
especially those that are intended to inform.

• Category 4.4: Sharing Even when humans do not aim to
intervene at all in AutoML processes, the results of these pro-
cesses are integrated into other human and organizational
processes to share knowledge. Artifacts that are intended
to be targeted (c4.4.1) to specific personas have a specific
purpose. We consider computational notebooks [114] to
be artifacts possessing such characteristics, as they are in-
tended to be shared with other technical data workers or
simply with the data scientist themselves. Artifacts with
distribution (c4.4.2) characteristics are those that aim to
have a wide audience. These can include presentations or
reports, many of which rely on the compilation and analysis
of other AutoML artifacts.

• Category 4.5: Steering Artifacts can act to orient or
intervene within an AutoML process. Artifacts with
directing (̧4.5.1) act to initialize or orient the AutoML pro-
cesses in a specific trajectory. These artifacts can include
a human setting initial goals, providing training data, or
providing initial configurations for components [113]. They
can also include algorithmic processes that define the fi-
nal configuration of AutoML components. In contrast, arti-
facts with refining (c4.5.2) characteristics are subtler than
directing as they largely build off of the existing model struc-
ture. Fine-tuning operations, for example Transfer Learn-
ing [5, 71, 117], produce artifacts for refining an existing
neural architecture [106], rather than conducting an expen-
sive neural architecture search [2, 42, 66, 99, 106, 120]. We
consider the former to be a refinement, while the latter uses
an initial design space configuration to direct the overall
neural architecture search process.
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